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ABSTRACT 

Multi-criteria decision-making (MCDM) models often lack the ability to 
simultaneously account for the relational structure among criteria as well as 

hesitation and uncertainty in human judgment. To address this limitation, this 

study proposes a novel approach by interpreting intuitionistic cubic fuzzy graphs 
(ICFGs) using the additive ratio assessment (ARAS) method. The proposed ICF–

ARAS model provides a structured relational framework for decision-making that 

incorporates interval-valued membership, non-membership, and hesitation 
degrees. To demonstrate the applicability of the proposed MCDM methodology, a 

case study on faculty recruitment is presented in which four candidates are 
evaluated across four criteria: qualifications, interview performance, teaching 

experience, and communication skills. The resulting model produces an identical 

ranking (P₂ ≥ P₁ ≥ P₄ ≥ P₃) to those obtained using established alternative 
approaches (ICF–TOPSIS and ICF–WASPAS), while offering enhanced 

interpretability, computational simplicity, and relational transparency. Overall, 
the proposed approach provides an effective, transparent, and flexible decision-

support mechanism for selecting multifaceted and uncertain candidates in higher 

education and related decision environments. 

Keywords: Intuitionistic cubic fuzzy graphs; multi-criteria decision making; 

ARAS method; faculty recruitment; fuzzy graph theory; decision support systems 

JEL Classification Codes: C44, I23, J45, M51 

1. INTRODUCTION 

Hiring the appropriate educator is one of the most important steps in the entire 

hiring process because the educator you choose will have a large impact on how 

effectively your students learn. When evaluating educators, schools must consider 

a variety of factors (such as educational qualifications, teaching experience, 
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communication skills, classroom management, research contributions, and student 

evaluations). As each of these criteria involves some degree of subjectivity and 

different weights from experts, determining the best educator will often be a 

complex and uncertain task. 

To overcome this challenge, this paper introduces a new methodology that 

incorporates the ARAS methodology and the CFG model to account for the 

uncertainty associated with expert evaluation of educator candidates. The 

proposed methodology combines qualitative and quantitative evaluations of 

candidates, thus allowing for an unbiased, fair, and transparent process for 

selecting the best educator for the school. A graph-theoretic approach is used to 

organize candidates and the evaluation criteria so that they can be systematically 

analyzed through an algorithmic framework that takes into account both the 

relationships among candidates and criteria as well as the uncertainties 

surrounding those relationships. 

Our contribution includes a complete integration of ICFGs and ARAS for 

modelling structured uncertainty and a complete mechanism for transparent 

utility-based ranking of alternatives that improves the interpretability of results. 

Lastly, a case study on an academic recruitment effort demonstrates the utility of 

these contributions and how they compare to established practices. 

1.1. Significance and Novelty 

Decision-making frameworks for HRM have seen an increase in focus on 

transparency and fairness in candidate selection, particularly in the academic 

sector. HRM applicant evaluation processes have historically relied on the 

subjective judgments of related experts, which lead to varying degrees of bias. As 

such, MCDM models were developed to provide a more systematic approach to 

candidate evaluation that takes into account the many quantitative metrics used to 

measure candidates. Regardless of recent innovations in MCDM models, allowing 

for uncertainty in hiring expert evaluations has been an ongoing challenge for 

HRM decision-making models. This paper presents an ICFG-based ARAS 

framework that incorporates uncertainty modelling within an established 

methodology of structured decision-making in HRM. By using a mathematical 

framework of HRM-relevant factors, the authors provide further support for 

continuing development of the literature around transparent, data-driven hiring 

within higher education and beyond. 

Although recent studies have applied intuitionistic fuzzy and cubic fuzzy MCDM 

techniques to decision-making problems, most existing approaches either ignore 

relational structures among criteria or fail to adequately model hesitation and 
uncertainty simultaneously. Moreover, many methods rely on distance-based 
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ranking, which reduces interpretability for real-world stakeholders. The present 

study addresses these gaps by combining ICFG with the ARAS method, enabling 

structured relational modeling and direct utility-based ranking. 

1.2. Objective of the Study 

This research This research aims to assist in faculty hiring through a transparent, 

sustainable, MCDM process using the ARAS method and ICFG to represent an 

entity (candidate) in a transparent manner, provide for uncertainty, and capture the 

collection of criteria and candidate relationship interaction for each of the 

candidates. The outcome from implementing the model through the proposed 

methodology will provide substantive increases in fairness, interpretability, and 

reliability of the decision-making process for faculty hiring within higher 

education institutions. 

The rest of the article is organized into six sections. Section 2 provides preliminary 

information, and Section 3 describes the ICF–ARAS algorithm. Section 4 shows 

how the framework can be applied in the context of selecting teachers. Section 5 

discusses findings and provides a comparative analysis. Finally, Section 6 

concludes the article with a discussion of the implications and future directions of 

this research. 

2. LITERATURE REVIEW  

Fuzzy graph (FG) theory was developed as a result of the integration of fuzzy set 

theory and graph theory. FG theory deals with situations in which the inherent 

vagueness of real-world systems cannot be adequately captured by crisp binary 

relationships. In fields where imprecision and uncertainty are inevitable, such 

systems frequently appear in broadcast communications, artificial intelligence, 

science and engineering, and neural networks. FG offers a versatile mathematical 

framework for expressing ambiguous relationships by permitting vertices and 

edges to have degrees of membership. Shi et al. (2024) provide a thorough 

summary of current advances in FGs. 

Interval-valued fuzzy sets (IVFSs) extend classical fuzzy sets by replacing single 

membership values with intervals, thereby capturing higher levels of uncertainty. 

The fusion of IVFSs with graph theory was initially formulated by Hongmei and 

Lianhua (2009). Subsequently, Akram and Dudek (2011) introduced several 

algebraic operations on IVFGs, while Pal and Rashmanlou (2014) investigated 

structural properties of highly irregular IVFGs. To further enhance modeling 

capability, Jun et al. (2011) proposed cubic sets, which combine fuzzy sets and 

IVFSs to represent complex uncertainty patterns that cannot be handled by 

conventional fuzzy models alone. Building on this concept, Rashid, Yaqoob, 

Akram, and Gulistan (2018) introduced CFGs. After identifying limitations in the 
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original definitions, Muhiuddin et al. (2020) provided revised and consistent 

formulations. Since then, several structural characteristics of CFGs have been 

examined, including connectivity and connectivity indices (Jun et al., 2011), 

regularity (Muhiuddin et al., 2022), bridges (Krishna et al., 2019), and planarity 

(Rao et al., 2024). Due to their enhanced flexibility, CFGs have been widely 

applied in modeling complex systems such as image processing, economic 

networks, traffic flow, and decision-support environments. 

Another important extension is intuitionistic fuzzy sets (IFSs), introduced by 

Atanassov (1999), which characterize uncertainty using both membership and 

non-membership degrees. Parvathi and Karunambigai (2006) extended this 

framework to IFGs, allowing simultaneous representation of acceptance and 

rejection in network structures. Later, Ismayil and Ali (2014) proposed interval-

valued intuitionistic fuzzy graphs to further accommodate imprecision. The 

concept was advanced by Muneeza and Abdullah (2020) through IFSs, integrating 

cubic and intuitionistic representations. This evolution led to the development of 

ICFGs in 2021, enabling richer modeling of uncertainty in graph-based systems. 

More recently, Fang et al. (2023) introduced planarity concepts for ICFGs, 

extending their applicability to complex topological and decision-making 

problems. 

Parallel to these developments, MCDM methods have been extensively employed 

to evaluate alternatives involving multiple, often conflicting, criteria. MCDM 

supports decision-makers by incorporating both quantitative and qualitative 

factors with assigned importance weights. Popular approaches include the 

Analytic Hierarchy Process (AHP) (Mahad, Yusof, & Ismail, 2021), the 

Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) 

(Amudha et al., 2021), and the Weighted Aggregated Sum Product Assessment 

(WASPAS) method (Zavadskas et al., 2013). To handle vague and uncertain 

relationships among criteria and alternatives, Zavadskas, Turskis, and Vilutiene 

(2010) proposed the ARAS method, which was later extended into fuzzy 

environments by Turskis and Zavadskas (2010). 

Motivated by the growing need to integrate advanced FG structures with decision-

making frameworks, this study develops an ICF-ARAS method. The proposed 

approach embeds the ARAS technique within the environment of ICFGs, enabling 

more robust handling of uncertainty, hesitation, and interval information in 

complex decision scenarios. Consequently, the method provides an effective tool 

for practical applications where both structural relationships and multi-criteria 

evaluations must be addressed simultaneously. 
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2. PRELIMINARIES 

Definition 3.1. A FS L on  𝑋 ≠ ∅   is prescribed by a membership function 

Ψ : X  →  [0, 1], 

It can be represented as 

L =
 

{(us, Ψ (us)): us ∈ X}. 

The support and support length of L are defined as supp(L) = {us ∈ X | Ψ 
(us) ≠  0 }  a n d  s(L) =|supp(L)|, respectively. The core and core length of 

L are defined as: 

core(L) = { us∈ X | Ψ (x) = 1}and c(L) = |core(L)|, 

respectively. The height of L is defined as h(L) = max { Ψ (us) | us ∈ X}. 

The fuzzy set L is called normal if h(L) = 1. 

Definition 3.2. A FG over 𝑋 ≠ ∅ is a pair (P, Q), where P and Q represent 

the fuzzy set FS on X and X × X, respectively. I t  i s  prescribed by a 

membership functions Ψp  : X → [0, 1] and   ΨQ : X × X → [0, 1], such that 

ΨQ (us−1, us) ≤ min{ΨP(υs−1), ΨP(υs)}, ∀υs−1, υs ∈ X}, 

where Q is a fuzzy relation on P. 

Example 3.3. Let ℙ and ℚ be the FSs on U = {v, w, x}, and U × U, respectively. 

The fuzzy membership values are given in Tables 1 & 2, respectively. The 

graphical representation of FG is shown in Figure 1. 

Table 1: A FS  ℙ on U 

U V w X 

ℙ 0.7 0.3 0.5 

Source: Author’s own 

Table 2: A FS  ℚ on U × U 

N⊆ U× U vw Wx Vx 

ℚ 0.2 0.3 0.4 

Source: Author’s own 
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Figure 1: A FG on U 

 

Source: Author’s own 

Definition 3.4.An IVFG R′ on X is a pair (P′, Q′), such that P′ = [ΨP′
−, ΨP′

+] and 

Q′ = [ΨQ′
−, ΨQ′

+] are IVFSs on X and X × X, respectively as ΨP′: X → D [0, 1] 

and ΨQ′ :  X × X → D [ 0, 1] so that ∀υs−1, υs ∈ X,  (Akram and Dudek, 2011) 

ΨQ′
− (υs−1, υs) ≤ min {ΨP′

−
 (υs−1), ΨP′

− (υs)}, ∀υs−1, υs ∈ X, 

ΨQ′
+ (υs−1, υs) ≤ min {ΨP′

+
 (υs−1), ΨP′

+ (υs)}, ∀υs−1, υs ∈ X, 

where Q′ is a fuzzy relation on P′. 

 Example 3.5. Let U = {l, m, n}. We define IVFSs P′ and Q′ on U and 

U×U, respectively, as defined in Tables 3 & 4. The graphical 

representation of The IVFG R′ = (P′, Q′) is shown in Figure 2. 

Table 3: An IVFS ℙ′ on X 

U L M N 

ℙ′ [0.2,0.5] [0.6,0.8] [0.5,0.9] 

Source: Author’s own 

Table 4: An IVFS set ℚ′ on  U × U 

N’ ⊆ U × U ln Mn Lm 

ℚ′ [0.2,0.4] [0.4,0.8] [0.1,0.4] 

Source: Author’s own 

 

′ ′ 



Faculty Recruitment using Intuitionistic Cubic Fuzzy Graphs                     | 8 

Social Science Multidisciplinary Review   Vol 3(2): 2025 

 

Figure 2: An IVFG on U 

 

Source: Author’s own 

Definition 3.6.  A cubic set (CS) C on X is prescribed by mappings 

ΨC = [Ψ −, Ψ +]: X → D [0, 1], and Ψ′C: X → [0, 1], 

where ΨC and Ψ′
C is an IVFS and FS on X, respectively. A CS can be 

represented as 

C = {(us, [ΨC
− (us), ΨC

+(us)], ΨC
’ (us)): us ∈ X}, 

where [ΨC (υs), ΨC (υs)] and ΨC are the interval-valued fuzzy membership 

value and fuzzy membership value at υs, respectively. 

The support and support length of C is defined as supp(C) = {us ∈ X | ΨC
−(us) 

≠ 0, Ψ'C ≠ 0} and s(C) = |supp(C)|, respectively. The core and core length of C 

is core(C) = {us ∈ X | ΨC
−(us) = 1, Ψ'C = 1} and c(C) = |core(C)|, respectively. 

The height of cubic set C is  ℎ(𝐶) = ([ℎ−(𝐶), ℎ+(𝐶)], ℎ′(𝐶)) =

([max𝜓𝐶−(𝑢𝑠) ,max𝜓𝐶+(𝑢𝑠)],max𝜓𝐶′(𝑢𝑠).) The CS is called normal if 

ℎ(𝐶) = 1. 

𝑃∗  = {([𝛹𝑃∗
− (𝑣𝑠),𝛹𝑃∗

+ (𝑣𝑠)],𝛹𝑃∗(𝑣𝑠)
′ }, 

𝑄∗ = {[𝜓𝑄∗
− (𝑣𝑠−1, 𝑣𝑠), 𝜓𝑄∗

+ (𝑣𝑠−1, 𝑣𝑠)],𝜓𝑄∗
′ (𝑣𝑠−1, 𝑣𝑠)}, 

are CSs on U and U × U, so that 

𝜓𝑄∗
− (𝑣𝑠−1, 𝑣𝑠) ≤ min{𝜓𝑃∗

− (𝑣𝑠−1), 𝜓𝑃∗
− (𝑣𝑠)}

,
 



Faculty Recruitment using Intuitionistic Cubic Fuzzy Graphs                     | 9 

Social Science Multidisciplinary Review   Vol 3(2): 2025 

 

𝜓𝑄∗
+ (𝑣𝑠−1, 𝑣𝑠) ≤ min{𝜓𝑃∗

+ (𝑣𝑠−1), 𝜓𝑃∗
+ (𝑣𝑠)}, 

𝜓𝑄∗
′ (𝑣𝑠−1, 𝑣𝑠) ≤ min{𝜓𝑃∗

′ (𝑣𝑠−1), 𝜓𝑃∗
′ (𝑣𝑠)}. 

Example 3.7: Suppose U= {l, m, n}. The membership values of   CS 

P* on U and Q* on U×U are given in Tables 5 & 6. The CFG 

corresponding to the above data is shown in Figure 3. 

Table 5: A CS on U 

U L M N 

P* ([0.2,0.6],0.5) ([0.3,0.9],0.2) ([0.4,0.85],0.64) 

Source: Author’s own 
 
Table 6:  A CS on U × U

 

M* ⊆ U × U lm Ln mn 

Q* ([0.2,0.5],0.15) ([0.3,0.77],0.2) ([0.14,0.58],0.49) 

Source: Author’s own 

Figure 3: A CFG on U 

 

Source: Author’s own 

Definition 3.8. According to Atanassov (1999), Let X be a non-empty set. 

An IFS I over X is defined as 

I = (υs, µˇI (υs), νˇI(υs)), 

where µˇI: X → [0, 1], and νˇI: X → [0, 1], denote the membership and non-

membership function, respectively, such that for all υs ∈ X, 0 ≤ µ Ǐ(υs) + ν Ǐ(υs) 
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≤ 1. 

Definition 3.9. A s  p e r  Muneeza and Abdullah (2020), an intuitionistic 
cubic fuzzy sets (ICFSs), IC over a non-empty set X is defined as: 

IC = {(υs, ([µˇI
−, µˇI

+], µˇI), ([ν Ǐ
−, ν Ǐ

+], ν Ǐ)) : υs ∈ X}, 

where ([µˇI
−, µˇI

+], µˇI) and ([νˇI
−, νˇI

+], νˇI) are the cubic numbers 

and denotes the membership and non-membership grades of IC. 

Definition 3.10. (Pramanik, et al., 2016) Let X be a non-empty set, an 

ICFG R̃ is a pair ( P̃ ,  Q̃) ,  where 

𝑃 = {(𝑣𝑠, ([𝜇𝑃
−(𝑣𝑠), 𝜇𝑃

+(𝑣𝑠)], 𝜇𝑃(𝑣𝑠)), ([𝜈̌𝑃
−(𝑣𝑠), 𝜈𝑃

+(𝑣𝑠)], 𝜈̌𝑃(𝑣𝑠)))} 

 is an ICFS on X and    

𝑄̃ =

{
 
 

 
 

(

 
 
(𝑣𝑠−1, 𝑣𝑠), (

[𝜇𝑄
−((𝑣𝑠−1, 𝑣𝑠), 𝜇𝑄

+((𝑣𝑠−1, 𝑣𝑠)],

 𝜇𝑄((𝑣𝑠−1, 𝑣𝑠)
) ,

(
[𝜈̌𝑄
−((𝑣𝑠−1, 𝑣𝑠), 𝜈𝑄

+((𝑣𝑠−1, 𝑣𝑠)],

 𝜈̌𝑃((𝑣𝑠−1, 𝑣𝑠)
)

)

 
 

}
 
 

 
 

 

 is an ICFS on X × X such that for every υs−1, υs ∈ X, 

𝜇𝑄
−((𝑣𝑠−1, 𝑣𝑠) ≤ min{𝜇𝑃

−(𝑣𝑠−1), 𝜇𝑃
−(𝑣𝑠) }, 

𝜇𝑄
+((𝑣𝑠−1, 𝑣𝑠) ≤ min{𝜇𝑃

+(𝑣𝑠−1), 𝜇𝑃
+(𝑣𝑠) }, 

 𝜇̌𝑄((𝑣𝑠−1, 𝑣𝑠) ≤ min{𝜇𝑃(𝑣𝑠−1), 𝜇𝑃(𝑣𝑠) }, 

𝜈̌𝑄
−((𝑣𝑠−1, 𝑣𝑠) ≥ max{𝜈̌𝑃

−(𝑣𝑠−1), 𝜈̌𝑃
−(𝑣𝑠)}, 

𝜈𝑄
+((𝑣𝑠−1, 𝑣𝑠) ≥ max{𝜈𝑃

+(𝑣𝑠−1), 𝜈𝑃
+(𝑣𝑠)}, 

𝜈̌𝑃((𝑣𝑠−1, 𝑣𝑠) ≥ max{𝜈̌𝑃(𝑣𝑠−1), 𝜈̌𝑃(𝑣𝑠)}. 

Definition 3.11. (Muneeza and Abdullah, 2020) Let IC be an intuitionistic 

cubic fuzzy number (ICFNs) defined as (([µˇI
−, µˇI

+], µˇI), ([νˇI
−, νˇI

+], νˇI)). 

Then, score function of IC is defined as: 

𝑆(𝐼𝑐) =
𝜇̌𝐼
−+𝜇̌𝐼

++𝜇̌𝐼−𝜈̌𝐼
−+ 𝜈̌𝐼

+− 𝜈̌𝐼

3
, 

such that  −1 ≤ 𝑆(𝐼𝑐) ≤ 1. 

The accuracy function 𝐼𝑐 is given as: 

𝐻(𝐼𝑐) =
𝜇̌𝐼
−+𝜇̌𝐼

++𝜇̌𝐼+𝜈̌𝐼
−+ 𝜈̌𝐼

++ 𝜈̌𝐼

3
, 
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such that −1 ≤ 𝐻(𝐼𝑐) ≤ 1. 

4. ARAS TECHNIQUE ON ICFG 

The algorithm used by the ICF-ARAS method, facilitating the solution of MCDM 

problems in an ICF environment, is developed in this section. It requires experts 

to provide the significance weights of criteria to establish the methodology. The 

ICF choice matrix is then used, which is normalized according to the type of 

criterion. The optimal function is determined by adding the ideal solution and 

computing the weighted matrix of norms. Finally, the utility level is calculated 

based on the accuracy measure of each option, and alternatives are prioritized 

according to their utility. 

Step 1: Constructing ICF decision matrix 

 For the alternatives  ℙ1, ℙ2. … , ℙ𝑚 and the criteria 𝐶1, 𝐶2… ,𝐶𝑛, i.e., benefit 

ℚ𝑡
𝑏and cost (non-benefit) criteria ℚ𝑡

𝑛𝑏 the ICFDM is represented as 

𝑀 = [< ([𝜇𝑖𝑗
− , 𝜇𝑖𝑗

+ ], 𝜇𝑖𝑗), ([𝜈𝑖𝑗
−, 𝜈𝑖𝑗

+], 𝜈𝑖𝑗) >]𝑚×𝑛
, 

 where ([𝜇𝑖𝑗
− , 𝜇𝑖𝑗

+], 𝜇𝑖𝑗) and ([𝜈𝑖𝑗
−, 𝜈𝑖𝑗

+], 𝜈𝑖𝑗) represents the membership and non-

membership grades of the edge between represent the membership and non-

membership grades of the edge between the i-th alternative and the j-th criterion, 

respectively eq. (1). 

𝑀 = 

  [

(([𝜇̌11
− , 𝜇̌11

+ ], 𝜇̌11), ([𝜈̌11
− , 𝜈̌11

+ ], 𝜈̌11)) (([𝜇̌12
− , 𝜇̌12

+ ], 𝜇̌12), ([𝜈̌12
− , 𝜈̌12

+ ], 𝜈̌12)) … (([𝜇̌1𝑛
− , 𝜇̌1𝑛

+ ], 𝜇̌1𝑛), ([𝜈̌1𝑛
− , 𝜈̌1𝑛

+ ], 𝜈̌11))

(([𝜇̌21
− , 𝜇̌21

+ ], 𝜇̌21), ([𝜈̌21
− , 𝜈̌21

+ ], 𝜈̌21)) (([𝜇̌22
− , 𝜇̌22

+ ], 𝜇̌22), ([𝜈̌22
− , 𝜈̌22

+ ], 𝜈̌22)) … (([𝜇̌2𝑛
− , 𝜇̌2𝑛

+ ], 𝜇̌2𝑛), ([𝜈̌2𝑛
− , 𝜈̌2𝑛

+ ], 𝜈̌2𝑛))
⋮ ⋮ ⋱ ⋮

(([𝜇̌𝑚1
− , 𝜇̌𝑚1

+ ], 𝜇̌𝑚1), ([𝜈̌𝑚1
− , 𝜈̌𝑚1

+ ], 𝜈̌𝑚1)) (([𝜇̌𝑚2
− , 𝜇̌𝑚2

+ ], 𝜇̌𝑚2), ([𝜈̌𝑚2
− , 𝜈̌𝑚2

+ ], 𝜈̌𝑚2)) ⋮ (([𝜇̌𝑚𝑛
− , 𝜇̌𝑚𝑛

+ ], 𝜇̌𝑚𝑛), ([𝜈̌𝑚𝑛
− , 𝜈̌𝑚𝑛

+ ], 𝜈̌𝑚𝑛))

]          

(1) 

where  𝑖 = 1, 2… ,𝑚 and 𝑗 = 1, 2… , 𝑛. 

Step 2: Rescaling the ICFDM  

The normalization of ICFDM is given below in eq. (2):  

𝑀̃ = 

[
 
 
 
 
 (([𝜇̌11

−̃ , 𝜇̌11
+̃ ], 𝜇̌11̃), ([𝜈̌11

−̃ , 𝜈̌11
+̃ ], 𝜈̌11̃)) (([𝜇̌12

−̃ , 𝜇̌12
+̃ ], 𝜇̌12̃), ([𝜈̌12

−̃ , 𝜈̌12
+̃ ], 𝜈̌12̃)) … (([𝜇̌1𝑛

−̃ , 𝜇̌1𝑛
+̃ ], 𝜇̌1𝑛̃), ([𝜈̌1𝑛

−̃ , 𝜈̌1𝑛
+̃ ], 𝜈̌1𝑛̃))

(([𝜇̌21
−̃ , 𝜇̌21

+̃ ], 𝜇̌21̃), ([𝜈̌21
−̃ , 𝜈̌21

+̃ ], 𝜈̌21̃)) (([𝜇̌22
−̃ , 𝜇̌22

+̃ ], 𝜇̌22̃), ([𝜈̌22
−̃ , 𝜈̌22

+̃ ], 𝜈̌22̃)) … (([𝜇̌2𝑛
−̃ , 𝜇̌2𝑛

+̃ ], 𝜇̌2𝑛̃), ([𝜈̌2𝑛
−̃ , 𝜈̌2𝑛

+̃ ], 𝜈̌2𝑛̃))

⋮ ⋮ ⋱ ⋮

(([𝜇̌𝑚1
−̃ , 𝜇̌𝑚1

+̃ ], 𝜇̌𝑚1̃), ([𝜈̌𝑚1
−̃ , 𝜈̌𝑚1

+̃ ], 𝜈̌𝑚1̃)) (([𝜇̌𝑚2
−̃ , 𝜇̌𝑚2

+̃ ], 𝜇̌𝑚2̃), ([𝜈̌𝑚2
−̃ , 𝜈̌𝑚1

+̃ ], 𝜈̌𝑚1̃)) … (([𝜇̌𝑚𝑛
−̃ , 𝜇̌𝑚𝑛

+̃ ], 𝜇̌𝑚𝑛̃), ([𝜈̌𝑚𝑛
−̃ , 𝜈̌𝑚𝑛

+̃ ], 𝜈̌𝑚𝑛̃))]
 
 
 
 
 

             

(2) 
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where for beneficial criteria  ℚ𝑡
𝑏, the values are given in eq. (3): 

𝜇̌𝑖𝑗−̃ =
𝜇̌𝑖𝑗
−

𝑠̃
, 𝜇̌𝑖𝑗

+̃ =
𝜇̌𝑖𝑗
+

𝑠̃
, 𝜇̌𝑖𝑗̃ =

𝜇̌𝑖𝑗

𝑠̃
,  𝜈̌𝑖𝑗−̃= 

𝜈̌𝑖𝑗
−

𝑠̃
, 𝜈̌𝑖𝑗

+̃= 
𝜈̌𝑖𝑗
+

𝑠̃
, 𝜈̌𝑖𝑗̃ =

𝜈̌𝑖𝑗

𝑠̃
,                 (3) 

Where,  

𝑠̃ = ∑ (𝜇̌𝑖𝑗
− + 𝜇̌𝑖𝑗

+ + 𝜇̌𝑖𝑗 + 𝜈̌𝑖𝑗
− + 𝜈̌𝑖𝑗

+ + 𝜈̌𝑖𝑗)
𝑚
𝑖=1                                                                    

For cost criteria (ℚ𝑡
𝑛𝑏), the values are given in eq. (4) 

 𝜇̌𝑖𝑗−̃ =

1
𝜇̌𝑖𝑗
−⁄

𝑠̃′
, 𝜇̌𝑖𝑗
+̃ =

1
𝜇̌𝑖𝑗
+⁄

𝑠̃′
, 𝜇̌𝑖𝑗̃ =

1
𝜇̌𝑖𝑗
⁄

𝑠̃′
, 𝜈̌𝑖𝑗−̃ = 

1
𝜈̌𝑖𝑗
−⁄

𝑠̃′
, 𝜈̌𝑖𝑗
+̃ = 

1
𝜈̌𝑖𝑗
+⁄

𝑠̃′
, 𝜈̌𝑖𝑗̃ =

1
𝜈̌𝑖𝑗
⁄

𝑠̃′
               

           (4) 

Where, 

𝑠̃′ =
1

∑ (𝜇̌𝑖𝑗
−+𝜇̌𝑖𝑗

++𝜇̌𝑖𝑗+𝜈̌𝑖𝑗
−+𝜈̌𝑖𝑗

++𝜈̌𝑖𝑗)
𝑚
𝑖=1

                                                                          

Step 3: Adding best alternative 

The best alternative is determined by considering the largest (for benefit) and 

smallest (for cost) value of the ICFN for each column. The (m + 1 × n) matrix is 

given in eq. (5) 

𝑀̃ =

[
 
 
 
 
 (([𝜇̌01

−̃ , 𝜇̌01
+̃ ], 𝜇̌11̃), ([𝜈̌01

−̃ , 𝜈̌01
+̃ ], 𝜈̌01̃)) (([𝜇̌02

−̃ , 𝜇̌02
+̃ ], 𝜇̌02̃), ([𝜈̌02

−̃ , 𝜈̌02
+̃ ], 𝜈̌02̃)) … (([𝜇̌0𝑛

−̃ , 𝜇̌0𝑛
+̃ ], 𝜇̌0𝑛̃), ([𝜈̌0𝑛

−̃ , 𝜈̌0𝑛
+̃ ], 𝜈̌0𝑛̃))

(([𝜇̌11
−̃ , 𝜇̌11

+̃ ], 𝜇̌11̃), ([𝜈̌11
−̃ , 𝜈̌11

+̃ ], 𝜈̌11̃)) (([𝜇̌12
−̃ , 𝜇̌12

+̃ ], 𝜇̌12̃), ([𝜈̌12
−̃ , 𝜈̌12

+̃ ], 𝜈̌12̃)) … (([𝜇̌1𝑛
−̃ , 𝜇̌1𝑛

+̃ ], 𝜇̌1𝑛̃), ([𝜈̌1𝑛
−̃ , 𝜈̌1𝑛

+̃ ], 𝜈̌1𝑛̃))

⋮ ⋮ ⋱ ⋮

(([𝜇̌𝑚1
−̃ , 𝜇̌𝑚1

+̃ ], 𝜇̌𝑚1̃), ([𝜈̌𝑚1
−̃ , 𝜈̌𝑚1

+̃ ], 𝜈̌𝑚1̃)) (([𝜇̌𝑚2
−̃ , 𝜇̌𝑚2

+̃ ], 𝜇̌𝑚2̃), ([𝜈̌𝑚2
−̃ , 𝜈̌𝑚1

+̃ ], 𝜈̌𝑚1̃)) … (([𝜇̌𝑚𝑛
−̃ , 𝜇̌𝑚𝑛

+̃ ], 𝜇̌𝑚𝑛̃), ([𝜈̌𝑚𝑛
−̃ , 𝜈̌𝑚𝑛

+̃ ], 𝜈̌𝑚𝑛̃))]
 
 
 
 
 

    

 (5) 

For Benefit criteria (ℚ𝑡
𝑏), we have eq. (6) 

((([𝜇̌01
−̃ , 𝜇̌01

+̃ ], 𝜇̌11̃), ([𝜈̌01
−̃ , 𝜈̌01

+̃ ], 𝜈̌01̃))) =

[(max
𝑖=1

([𝜇̌𝑖𝑗
−̃ , 𝜇̌𝑖𝑗

+̃], 𝜇̌𝑖𝑗̃)) , (min
𝑖=1

([𝜈̌𝑖𝑗
−̃, 𝜈̌𝑖𝑗

+̃], 𝜈̌𝑖𝑗̃))]             (6) 

For Cost criteria (ℚ𝑡
𝑏), we have  eq. (7) 

((([𝜇̌01
−̃ , 𝜇̌01

+̃ ], 𝜇̌11̃), ([𝜈̌01
−̃ , 𝜈̌01

+̃ ], 𝜈̌01̃))) =

[(min
𝑖=1

([𝜇̌𝑖𝑗−̃ , 𝜇̌𝑖𝑗
+̃], 𝜇̌𝑖𝑗̃)) , (max

𝑖=1
([𝜈̌𝑖𝑗−̃, 𝜈̌𝑖𝑗

+̃], 𝜈̌𝑖𝑗̃))]                  (7) 

𝑗 = 1, 2… , 𝑛. 
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Step 4: Determining the weighted normalized ICFDM 

 The entropy weights suggested by the experts in eq. (8)  

𝜔̃ =  ( 𝜔̃1, 𝜔̃2, … , 𝜔̃𝑛  )                                                                      (8) 

We get the weighted normalized ICFDM given in eq, (9) by multiplying 𝜔̃ with 

𝑀̃ in eq. (5). 

𝑊̃ =

     

[
 
 
 
 
 
 (([𝛼̌01

−̃ , 𝛼̌01
+̃ ], 𝛼̌11̃), ([𝛽̌01

−̃ , 𝛽̌01
+̃ ] , 𝛽̌01

̃ )) (([𝛼̌02
−̃ , 𝛼̌02

+̃ ], 𝛼̌02̃), ([𝛽̌02
−̃ , 𝛽̌02

+̃ ] , 𝛽̌02
̃ )) … (([𝛼̌0𝑛

−̃ , 𝛼̌0𝑛
+̃ ], 𝛼̌0𝑛̃), ([𝛽̌0𝑛

−̃ , 𝛽̌0𝑛
+̃ ] , 𝛽̌0𝑛

̃ ))

(([𝛼̌11
−̃ , 𝛼̌11

+̃ ], 𝛼̌11̃), ([𝛽̌11
−̃
, 𝛽̌11

+̃ ] , 𝛽̌11
̃ )) (([𝛼̌12

−̃ , 𝛼̌12
+̃ ], 𝛼̌12̃), ([𝛽̌12

−̃ , 𝛽̌𝟏2
+̃ ] , 𝛽̌12

̃ )) … (([𝛼̌1𝑛
−̃ , 𝛼̌1𝑛

+̃ ], 𝛼̌1𝑛̃), ([𝛽̌1𝑛
−̃ , 𝛽̌1𝑛

+̃ ] , 𝛽̌1𝑛
̃ ))

⋮ ⋮ ⋱ ⋮

(([𝛼̌𝑚1
−̃ , 𝛼̌𝑚1

+̃ ], 𝛼𝑚1̃), ([𝛽̌𝑚1
−̃ , 𝛽̌𝑚1

+̃ ] , 𝛽̌𝑚1
̃ )) (([𝛼̌𝑚2

−̃ , 𝛼̌𝑚2
+̃ ], 𝛼̌𝑚2̃), ([𝛽̌𝑚2

−̃ , 𝛽̌𝑚1
+̃ ] , 𝛽̌𝑚1

̃ )) … (([𝛼̌𝑚𝑛
−̃ , 𝛼̌𝑚𝑛

+̃ ], 𝛼̌𝑚𝑛̃), ([𝛽̌𝑚𝑛
−̃ , 𝛽̌𝑚𝑛

+̃ ] , 𝛽̌𝑚𝑛
̃ ))]

 
 
 
 
 
 

,                 (9) 

such that 

(([𝛼̌𝑖𝑗−̃, 𝛼̌𝑖𝑗
+̃], 𝛼̌𝑖𝑗̃), ([𝛽̌𝑖𝑗−̃, 𝛽̌𝑖𝑗

+̃] , 𝛽̌𝑖𝑗
̃)) = 𝜔𝑗  [(([𝜇̌𝑖𝑗−̃ , 𝜇̌𝑖𝑗

+̃], 𝜇̌𝑖𝑗̃), ([𝜈̌𝑖𝑗−̃, 𝜈̌𝑖𝑗
+̃], 𝜈̌𝑖𝑗̃))] 

Step 5 Optimality function 

 For each row for i=1, 2,,m, it is computed as: 

𝑂𝑃̃ = (([𝑂𝑝𝑖−̃ , 𝑂𝑝𝑖
+̃], 𝑂𝑝𝑖̃), ([𝑄𝑝𝑖−̃ , 𝑄𝑝𝑖

+̃ ], 𝑄𝑝𝑖̃)),            

𝑂𝑝𝑖−̃ = ∑ 𝛼̌𝑖𝑗−̃
𝑛
𝑗=1 , 𝑂𝑝𝑖

+̃ = ∑ 𝛼̌𝑖𝑗
+̃𝑛

𝑗=1 , 𝑂𝑝𝑖̃ = ∑ 𝛼̌𝑖𝑗̃
𝑛
𝑗=1  

𝑄𝑝𝑖−̃ = ∑ 𝛽̌𝑖𝑗−̃
𝑛
𝑖=1 ,  𝑄𝑝𝑖

+̃ = ∑ 𝛽̌𝑖𝑗
+̃𝑛

𝑖=1 ,  𝑄𝑝𝑖̃ = ∑ 𝛽̌𝑖𝑗
̃𝑛

𝑖=1  

The accuracy value for each alternative ℙ𝑖 for i=0,1, 2…, is computed as: 

ℙ𝑖̃ =
𝑂𝑝𝑖
−̃+𝑂𝑝𝑖

+̃+𝑂𝑝𝑖̃−𝑄𝑝𝑖
−̃+𝑄𝑝𝑖

+̃−𝑄𝑝𝑖̃

3
.                                 

Step 6: Determining the utility degree  

For each alternative, it is calculated as    𝑈𝑖̃ =
ℙ𝑖̃

ℙ0̃
 , so that ℙ0 = 𝑚𝑎𝑥 ℙ𝑖.  

Step 7: Ranking the alternatives  

Alternatives are ranked by comparing their utility degrees in descending order. 

The alternative with the highest utility is considered the best. The flowchart of the 

proposed technique is presented in Figure 4. 

Expert judgment, based on institutional priorities and academic standards, 
provides the criterion weights for academic placement decisions. Although the 



Faculty Recruitment using Intuitionistic Cubic Fuzzy Graphs                     | 14 

Social Science Multidisciplinary Review   Vol 3(2): 2025 

 

current study assumes consensus among decision-makers, the framework can 

naturally accommodate group decision-making mechanisms, such as aggregated 

expert opinions. Its flexibility also allows alignment with institutional recruitment 

policies and collective governance practices typical of higher education 

institutions. 

5. DECISION-MAKING FRAMEWORK FOR TEACHER SELECTION  

The selection of teachers for an educational institution is a critical process, as it 

involves consideration of multiple factors, including academic qualifications, 

teaching experience, communication and research abilities, and student and 

classroom management. This process is a major determinant of the quality of 

teaching delivered to students. Often, the selection process requires subjective 

judgment and involves a certain degree of risk. 

Institutions typically implement rigorous procedures to ensure that selected 

teachers possess not only strong academic credentials but also a genuine 

inclination toward teaching and the ability to engage and inspire their audience. 

The teacher selection process generally involves multiple steps. In this study, four 

candidates, 𝑃1, 𝑃2, 𝑃3, and 𝑃4 advance to a detailed evaluation stage. 

To identify the most suitable candidate, the decision-makers evaluate them based 

on four key criteria: 

C1: Qualification 

C2: Interview results 

C3: Teaching experience 

C4: Communication skills 

It is important to note that faculty recruitment inherently involves human 

judgment, which can be influenced by cognitive biases, institutional preferences, 

and varying interpretations of evaluation criteria. The intuitionistic cubic fuzzy 

(ICF) representation allows decision-makers to express hesitation and partial 

belief, thereby reducing the rigidity of crisp scoring systems and mitigating the 

impact of individual bias. By accommodating both membership and non-

membership degrees, the proposed framework provides a more realistic and 

flexible representation of expert assessments. 
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Figure 4: Flow Chart of ICFG based ARAS Technique 

 

Source: Author’s own 
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Suppose the decision-maker expresses his or her preference regarding candidates 

for criteria by using ICFN as given in Figure 5. 

Figure 5: Intuitionistic Cubic Fuzzy Decision Graph of Alternatives and 

Criteria 

  

Source: Author’s own 

The ICFN is significant since it handles uncertainties more precisely and in 

intuitionistic numbers, which are cubic numbers including the membership and 

non-membership values. The following points can be taken under consideration to 

model this problem: 

• The vertices of the graph represent four candidates and four selection criteria. 

• Candidate vertices possess membership values in the form of ICFSs, 

representing current and previous minimum and maximum membership and 

non-membership values regarding the likelihood of hiring. 
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• Criteria vertices also have membership values in ICFS form, expressing the 

institution’s expectations for each criterion.  

An edge exists between a candidate and a criterion if the candidate meets the 

criterion; the edge membership value indicates the degree of fulfillment. 

The ARAS technique is then applied to the ICFDG given in Figure 5.  The best 

optimal candidate for the teaching position is then selected. The breakdown of the 

computation is illustrated as below: 

Step 1: The following Table 7 describe the values given by the decision-makers. 

Table 7: Intuitionistic Cubic Fuzzy Decision Matrix of Alternative and 

Criteria 

Alternative

s 

𝑪𝟏 𝑪𝟐 𝑪𝟑 𝑪𝟒 

ℙ1 
(
([0.2,0.31], 0.25),
([0.05,0.2], 0.2)

) (
([0.6,0.7], 0.1),
([0.1,0.2], 0.4)

) (
([0.3,0.45], 0.3),
([0.1,0.19], 0.4)

) (
([0.1,0.2], 0.2),
([0.1,0.15], 0.15)

) 

ℙ2 
(
([0.2,0.35], 0.49),
([0.2,0.25], 0.2)

) (
([0.6,0.7], 0.1),
([0.15,0.2], 0.3)

) (
([0.4,0.5], 0.35),
([0.2,0.29], 0.39)

) (
([0.1,0.15], 0.4),
([0.1,0.3], 0.2)

) 

ℙ3 
(
([0.1,0.3], 0.1),
([0.3,0.55], 0.2)

) (
([0.1,0.2], 0.1),
([0.17,0.2], 0.4)

) (
([0.1,0.4], 0.2),
([0.2,0.4], 0.41)

) (
([0.1,0.15], 0.2),
([0.2,0.24], 0.2)

) 

ℙ4 
(
([0.2,0.21], 0.21),
([0.15,0.2], 0.18)

) (
([0.2,0.7], 0.1),
([0.1,0.2], 0.2)

) (
([0.15,0.45], 0.2),
([0.1,0.22], 0.4)

) (
([0.05,0.15], 0.3),
([0.1,0.2], 0.15)

) 

Source: Author’s own 

Step 2: The normalized ICF decision matrix is given in Table 8: 

Table 8: Normalized Decision Matrix of Alternatives and Criteria 

Alternatives 𝑪𝟏 𝑪𝟐 𝑪𝟑 𝑪𝟒 

ℙ1 

(
(
[0.0357,0.0554],

0.0446
)

(
[0.0089,0.0375],

0.0357
)
) (

(
[0.0088,0.1026],

0.0147
)

(
[0.147,0.0293],

0.0587
)
) (

(
[0.0423,0.0634],

0.0423
)

(
[0.0141,0.0268],

0.563
)
) (

(
[0.0239,0.0477],

0.0477
)

(
[0.0239,0.0358],

0.0358
)
) 

ℙ2 

(
(
[0.0357,0.0625],

0.0875
)

(
[0.0357,0.0446],

0.0357
)
) (

(
[0.0088,0.1026],

0.0147
)

(
[0.0022,0.0293],

0.0044
)
) (

(
[0.0563,0.0704],

0.0493
)

(
[0.0282,0.0408],

0.0549
)
) (

(
[0.0239,0.0358],

0.0955
)

(
[0.0239,0.0716],

0.0477
)
) 
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ℙ3 

(
(
[0.0179,0.0536],

0.0179
)

(
[0.0536,0.0982],

0.0357
)
) (

(
[0.0147,0.0293],

0.0147
)

(
[0.0249,0.0293],

0.0587
)
) (

(
[0.0141,0.0563],

0.0282
)

(
[0.0282,0.0573],

0.0577
)
) (

(
[0.0239,0.0358],

0.0477
)

(
[0.0477,0.0573],

0.0477
)
) 

ℙ4 

(
(
[0.0357,0.0375],

0.0375
)

(
[0.0268,0.0375],

0.0321
)
) (

(
[0.0293,0.1026],

0.0147
)

(
[0.0147,0.0293],

0.0293
)
) (

(
[0.0211,0.0634],

0.0282
)

(
[0.0141,0.031],

0.0563
)
) (

(
[0.0119,0.0358],

0.0375
)

(
[0.038,0.0477],

0.0358
)
) 

Source: Author’s own 

Step 3: After the addition of ideal best alternative, the normalized decision 

matrix is described in Table 9. 

 Table 9: Addition of Ideal Best Alternative in Normalized Decision Matrix 

Alternatives C1 C2 C3 C4 

Ideal best 

(
(
[0.0357, 0.0625],

𝑂. 𝑂875,
)

(
[0.0089,0.0357],

0.0321
)
) (

(
[0.088,0,1026],

0.0147,
)

(
[0.0147,0.0293],

0.0293
)
) (

(
[0.0563,0.0704],

0.0493,
)

(
[0.0141,0.0268],

𝑂. 𝑂549
)
) (

(
[𝑂. 𝑂239,0.0477, ]

0.0955,
)

(
[0.0239,0.0358],

0.0358
)
) 

ℙ1 

(
(
[0.0357, 0.0554],

0.0446,
)

(
[0.0089, 0.0357],

0.0357
)
) (

(
[0.088, 0.1026],

0.0147,
)

(
[0.0147, 0.0293],

0.0587
)
) (

(
[0.0423, 0.0634],

0.0423,
)

(
[0.0141, 0.0268],

0.0563
)
) (

(
[0.0239,0.0477],

0.0955,
)

(
[0.0239,0.0358],

0.0358
)
) 

ℙ2 

(
(
[0.0357,0.0625],

0.0875,
)

(
[0.0357,0.0446],

0.0357
)
) (

(
[0.088, 0.1026],

0.0147,
)

(
[0.022, 0.0293],

0.0044
)
) (

(
[0.0563, 0.0704],

0.0493,
)

(
[0.0282, 0.0408],

0.0549
)
) (

(
[0.0239, 0.0358],

0.0955,
)

(
[0.0239, 0.0716],

0.0477
)
) 

ℙ3 

(
(
[0.0179,0.0539],

0.0179,
)

(
[0.0536,0.0982],

0.0357
)
) (

(
[0.0147, 0.0293],

0.0147,
)

(
[0.0249, 0.0293],

0.0587
)
) (

(
[0.0141, 0.0563],

0.0282,
)

(
[0.0282, 0.0563],

0.0577
)
) (

(
[0.0239, 0.0358],

0.0477,
)

(
[0.0477, 0.0573],

0.0477
)
) 

ℙ4 

(
(
[𝑂.𝑂357,0.0375],

0.0375
)

(
[0.0268, 𝑂. 𝑂375],

0.0321
)
) (

(
[0.0293, 0.1026],

0.0147,
)

(
[0.0147, 0.0293],

0.0293
)
) (

(
[0.0211, 0.0634],

0.0282,
)

(
[0.0141, 0.031],

0.0563
)
) (

(
[0.0119, 0.0358],

0.0716,
)

(
[0.0238, 0.0477],

0.0358
)
) 

Source: Author’s own 

Step 4: The weights suggested by decision-makers assigned to each criterion are: 

𝜔̃ =  ( 𝜔̃1, 𝜔̃2, 𝜔̃3, 𝜔̃4  ) =  (0.2, 0.35, 0.15, 0.3) 

such that ∑ 𝜔̃𝑗
4
𝑗=1 = 1.  The weighted normalized decision matrix is in Table 10 
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Table 10: Weighted Normalized Decision Matrix 

Source: Author’s own 

Step 5: The optimality value and accuracy value for each alternative is in Table 

11. 

Table 11: Optimality Function 𝑸̃ 

Alternatives 𝑸̃𝒊 𝑷̃𝒊 
Ideal best 

(
[0.0536,0.0733], 0.0587
[0.0162,0.0321], 0, .0356

) 
0.05643 

ℙ1 
(
[0.0515,0.0708], 0.0346
[0.0162,0.0321], 0, .0467

) 
0.042 

ℙ2 
(
[0.0535,0.0697], 0.0587
[0.0262,0.0468], 0, .045

) 
0.0525 

ℙ3 
(
[0.018,0.0401], 0.0272
[0.0379,0.0555], 0, .0506

) 
0.0174 

ℙ4 
(
[0.0242,0.0636], 0.0383
[0.0197,0.0364], 0, .0359

) 
0.0356 

Source: Author’s own 

Step 6: The utility degree for each alternative is shown in Table 12.  

Table 12: Utility Degree and Ranking of Alternatives 

Alternatives 𝑼̃𝒊 Ranking 

ℙ1 0.7443 2 

Alternatives C1 C2 C3 C4 

Ideal best 

(
(
[0.0071, 0.0125],

0.0175
)

(
[0.0018, 0.0071],

0.0064
)
) (

(
[0.0308, 0.0359],

0.0051
)

(
[0.0051, 0.0103]

0.0103
)
) (

(
[0.0085, 0.0106],

0.0074
)

(
[0.0021,0.004],

0.0082
)
) (

(
[0.0072,0.0143],

0.0287
)

(
[0.0072,0.0107, ]

0.0107
)
) 

ℙ1 

(
(
[0.0071, 0.0111],

0.0089
)

(
[[0.0018, 0.0071],

0.0071
)
) (

(
[0.0308,0.0359],

0.0051
)

(
[0.0051,0.0103],

0.00205
)
) (

(
[0.0063, 0.0095],

0.0063
)

(
[0.0021, 0.004],

0.0084
)
) (

(
[0.0072, 0.0143],

0.0143
)

(
[0.0072, 0.0107],

0.0107
)
) 

ℙ2 

(
(
[0.0071, 0.0125],

0.0175
)

(
[[0.0071, 0.0089],

0.0071
)
) (

(
[0.0308, 0.0359],

0.0051
)

(
[0.0077, 0.0103],

0.0154
)
) (

(
[0.0084, 0.0106],

0.0074
)

(
[0.0042, 0.0061],

0.0082
)
) (

(
[0.0072, 0.0107],

0.0287
)

(
[0.0072, 0.0215],

0.0143
)
) 

ℙ3 

(
(
[([0.0036, 0.0107],

0.0036
)

(
[0.0107, 0.0196],

0.0071
)
) (

(
[0.0051, 0.0103],

0.0051
)

(
[0.0087,0.0103],

0.0205
)
) (

(
[0.0021, 0.0084],

0.0042
)

(
[0.0042, 0.0084],

0.0087
)
) (

(
[0.0072, 0.0107],

0.0143
)

(
[0.0143, 0.0172],

0.0143
)
) 

ℙ4 

(
(
[0.0071, 0.0075],

0.0075
)

(
[0.0054, 0.0071],

0.0064
)
) (

(
[0.0103, 0.0359],

0.0051
)

(
[0.0051, 0.0103],

0.0103
)
) (

(
[0.0032, 0.0095],

0.0042
)

(
[0.0021, 0.0047],

0.0085
)
) (

(
[0.0036, 0.0107],

0.0215
)

(
[0.0071, 0.0143],

0.0107
)
) 
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ℙ2 0.930 1 

ℙ3 0.3083 4 

ℙ4 0.6309 3 

Source: Author’s own 

6. DISCUSSION AND COMPARATIVE ANALYSIS  

The ICF-ARAS framework offers theoretical and practical advantages over 

traditional fuzzy MCDM methods: 

6.1. Theoretical advantages 

• Uses ICFGs to represent membership, non-membership, hesitation, and 

interrelationships among criteria and alternatives. 

• Improves interpretability by visualizing structured relationships. 

6.2. Practical advantages 

• ARAS provides a direct utility-based evaluation, unlike TOPSIS which relies 

on distance measures. 

• ICF decision matrices incorporate interval-valued assessments to handle 

uncertainty. 

• Calculation of alternative optimality and utility ensures transparent 

prioritization in uncertain environments.  

The obtained utility values are 𝑈̃𝑖(ℙ2) =  0.930, 𝑈̃𝑖(ℙ1) = 0.7443, 𝑈̃𝑖(ℙ4) =
0.6309,  𝑈̃𝑖(ℙ3) = 0.3083 . Therefore  the Candidates are ranked as : ℙ2 ≥
 ℙ1 ≥ ℙ4 ≥ ℙ3.  

This outcome shows that candidate (ℙ2) has the best overall fit to the teaching job, 

primarily because of better performance in a variety of criteria when considered 

within an intuitionistic cubic fuzzy context. The rather lower value of (ℙ3) 

indicates poorer consistency of performance and greater values of hesitation which 

prove the sensitivity of the offered model to the changes in both membership and 

non-membership levels. The findings affirm that the ICF-ARAS model can 

accurately identify slight differences amongst the options even with inaccurate 

assessments, which ensures that there is a steady prioritization mechanism 

employed during decision making in a highly uncertain environment. 

To further examine the validity of the proposed approach, the same dataset was 

analyzed using two existing techniques, namely ICF-WASPAS (Senapati, et al., 
2021) and ICF-TOPSIS (Muneeza et al., 2021). All methods produced the 
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identical ranking order ℙ2 ≥ ℙ1 ≥ ℙ4 ≥ ℙ3. which confirms the stability and 

correctness of the proposed ICF-ARAS method. 

The obtained results of the ranking are the same, but the proposed approach has a 

number of notable benefits. In contrast to ICF-TOPSIS where the distance is used 

to identify the proximity of the solutions to an ideal solution and an anti-ideal 

solution, the ARAS-based architecture assesses each alternative in a first place 

with the help of direct comparison with an ideal reference, which leads to a higher 

interpretability level of the utility. This property finds its application especially 

during the process of explaining decisions to the stakeholders. In addition, 

ICFARAS frameworks have a simpler computational structure with an equivalent 

strength of discrimination compared to ICF-WASPAS, which involves the 

hybridization of additive and multiplicative aggregation schemes. The 

comparative results are shown in Table 13 and Figure 6, which further emphasize 

that the previous techniques had the same ranking as our proposed technique. This 

shows that the proposed technique is practical, adaptable, and significant. 

Table 13: Comparison Analysis 

Alternatives ICF-WASPAS ICF-TOPSIS ICF-ARAS 

 Score Ranking Score Ranking Score Ranking 

ℙ1 0.7072 2 0.7803 2 0.7443 2 

ℙ2 0.8459 1 1.000 1 0.930 1 

ℙ3 0.1576 4 0.2585 4 0.3083 4 

ℙ4 0.5411 3 0.6418 3 0.6309 3 

Source: Author’s own 

Lastly, using ICFGs helps the proposed structure to ensure that the relationship 

between criteria and candidates is maintained, as most of the conventional cubic 

fuzzy MCDM ignores these relationships. Such structural modelling has important 

descriptive and analytical strengths of the framework. Therefore, the comparative 

analysis confirms that the suggested ICF-ARAS method is compatible with the 

already existing methods and even more interpretable, structurally expressive, and 

efficient in calculation, which makes it a strong instrument of complex real-world 

problems of decision-making. Here is the full, reviewer friendly, and similarity-

free conclusion section to your paper on ICF-ARAS over ICFGs. 
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Figure 6: Comparison of ICF-ARAS Technique with other Techniques 

 

Source: Author’s own 

7. CONCLUSION  

For detecting occupational fraud, organizations use various techniques, tools, and 

procedures. These include internal audits, external audits, internal control systems, 

forensic audits, etc. Whistleblowing is considered one of the most effective tools 

for fraud detection. A whistleblowing system consists of several components, such 

as anonymous reporting channels (ARC), job security (JS) for whistleblowers, 

previous outcomes of reported whistleblowing events (PWB), and whistleblowing 

incentives (WBI). These attributes play a significant role in making the system 

more effective and result oriented. 

This paper presented a new decision-making model, which is founded on 

combining an ICFG with the ARAS technique to deal with uncertainty, hesitation, 

and vagueness related to the real-world needs of MCDM. The intuitionistic cubic 

structure, in contrast to classical fuzzy and intuitionistic fuzzy models, 

simultaneously represents degree of interval-valued membership, non-
membership, and degree of precise hesitation under intuitionistic cubic nature, 

thus a more detailed and adaptable mathematical summary of human judgments. 
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The ability and applicability of the intended ICF-ARAS approach was 

demonstrated by a realistic case study involving faculty recruitment in which four 

candidates were compared based on various qualitative parameters. The 

framework maintained the structural dependencies between decision elements by 

modeling the candidate and criteria as nodes in an ICFG and expressing the 

relationships between them as intuitionistic cubic fuzzy edge weights. The 

acquired ranking (ℙ2 ≥ ℙ1 ≥ ℙ4 ≥ ℙ3) evidenced that the suggested method can 

provide consistent and interpretable results even when ambiguous and partially 

credible information is introduced. A comparative study with the already existing 

methods, i.e. ICF-WASPAS and ICF-TOPSIS shared the same ordering results, 

thus affirming the accuracy and consistency of the proposed model. Nevertheless, 

ICF-ARAS approach also has more benefits related to computational simplicity, 

clear aggregation of preference data, and the potential to retain graph-based 

relational knowledge, which is not straightforwardly considered in the majority of 

cubic fuzzy MCDM models.   

In practical terms, the suggested model is highly flexible and can be successfully 

implemented in a range of areas of application, such as personnel selection, 

supplier assessment, healthcare diagnostics, project prioritization, and risk 

evaluation. The inherent interdependence of decision criteria and the imprecision 

of evaluations in these situations makes the model especially relevant as future 

studies aim to design dynamic ICFG-based ARAS models that support time-

varying preferences, the introduction of group decision-making logic that 

considers the opinions of heterogeneous experts, and the consideration of hybrid 

extensions that allow entropy-based or optimization-based determination of 

weights. Furthermore, the theoretical properties of the ICFG operators and their 

effects on the consistency of the decision are promising directions of future 

research. The expected impacts of these extensions are that it will expand the 

usefulness of the proposed framework and increase its usefulness in large and 

complicated decision situations.  

The in-depth case of this article only includes few candidates and criteria, which 

might limit the generalizability. But the main purpose is to prove the applicability 

and validity of the proposed ICF-ARAS model rather than empirical 

generalization. Future research could also use this framework with bigger 

datasets, multiple departments, or at diverse institutions to test its efficacy. 
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