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ABSTRACT

Multi-criteria decision-making (MCDM) models often lack the ability to
simultaneously account for the relational structure among criteria as well as
hesitation and uncertainty in human judgment. To address this limitation, this
study proposes a novel approach by interpreting intuitionistic cubic fuzzy graphs
(ICFGs) using the additive ratio assessment (ARAS) method. The proposed ICF—
ARAS model provides a structured relational framework for decision-making that
incorporates interval-valued membership, non-membership, and hesitation
degrees. To demonstrate the applicability of the proposed MCDM methodology, a
case study on faculty recruitment is presented in which four candidates are
evaluated across four criteria: qualifications, interview performance, teaching
experience, and communication skills. The resulting model produces an identical
ranking (P: > P: > P+ > P3) to those obtained using established alternative
approaches (ICF-TOPSIS and ICF-WASPAS), while offering enhanced
interpretability, computational simplicity, and relational transparency. Overall,
the proposed approach provides an effective, transparent, and flexible decision-
support mechanism for selecting multifaceted and uncertain candidates in higher
education and related decision environments.

Keywords: Intuitionistic cubic fuzzy graphs; multi-criteria decision making;
ARAS method; faculty recruitment; fuzzy graph theory; decision support systems

JEL Classification Codes: C44, 123, J45, M51

1. INTRODUCTION

Hiring the appropriate educator is one of the most important steps in the entire
hiring process because the educator you choose will have a large impact on how
effectively your students learn. When evaluating educators, schools must consider
a variety of factors (such as educational qualifications, teaching experience,
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communication skills, classroom management, research contributions, and student
evaluations). As each of these criteria involves some degree of subjectivity and
different weights from experts, determining the best educator will often be a
complex and uncertain task.

To overcome this challenge, this paper introduces a new methodology that
incorporates the ARAS methodology and the CFG model to account for the
uncertainty associated with expert evaluation of educator candidates. The
proposed methodology combines qualitative and quantitative evaluations of
candidates, thus allowing for an unbiased, fair, and transparent process for
selecting the best educator for the school. A graph-theoretic approach is used to
organize candidates and the evaluation criteria so that they can be systematically
analyzed through an algorithmic framework that takes into account both the
relationships among candidates and criteria as well as the uncertainties
surrounding those relationships.

Our contribution includes a complete integration of ICFGs and ARAS for
modelling structured uncertainty and a complete mechanism for transparent
utility-based ranking of alternatives that improves the interpretability of results.
Lastly, a case study on an academic recruitment effort demonstrates the utility of
these contributions and how they compare to established practices.

1.1. Significance and Novelty

Decision-making frameworks for HRM have seen an increase in focus on
transparency and fairness in candidate selection, particularly in the academic
sector. HRM applicant evaluation processes have historically relied on the
subjective judgments of related experts, which lead to varying degrees of bias. As
such, MCDM models were developed to provide a more systematic approach to
candidate evaluation that takes into account the many quantitative metrics used to
measure candidates. Regardless of recent innovations in MCDM models, allowing
for uncertainty in hiring expert evaluations has been an ongoing challenge for
HRM decision-making models. This paper presents an ICFG-based ARAS
framework that incorporates uncertainty modelling within an established
methodology of structured decision-making in HRM. By using a mathematical
framework of HRM-relevant factors, the authors provide further support for
continuing development of the literature around transparent, data-driven hiring
within higher education and beyond.

Although recent studies have applied intuitionistic fuzzy and cubic fuzzy MCDM
techniques to decision-making problems, most existing approaches either ignore
relational structures among criteria or fail to adequately model hesitation and
uncertainty simultaneously. Moreover, many methods rely on distance-based
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ranking, which reduces interpretability for real-world stakeholders. The present
study addresses these gaps by combining ICFG with the ARAS method, enabling
structured relational modeling and direct utility-based ranking.

1.2. Objective of the Study

This research This research aims to assist in faculty hiring through a transparent,
sustainable, MCDM process using the ARAS method and ICFG to represent an
entity (candidate) in a transparent manner, provide for uncertainty, and capture the
collection of criteria and candidate relationship interaction for each of the
candidates. The outcome from implementing the model through the proposed
methodology will provide substantive increases in fairness, interpretability, and
reliability of the decision-making process for faculty hiring within higher
education institutions.

The rest of the article is organized into six sections. Section 2 provides preliminary
information, and Section 3 describes the ICF-ARAS algorithm. Section 4 shows
how the framework can be applied in the context of selecting teachers. Section 5
discusses findings and provides a comparative analysis. Finally, Section 6
concludes the article with a discussion of the implications and future directions of
this research.

2. LITERATURE REVIEW

Fuzzy graph (FG) theory was developed as a result of the integration of fuzzy set
theory and graph theory. FG theory deals with situations in which the inherent
vagueness of real-world systems cannot be adequately captured by crisp binary
relationships. In fields where imprecision and uncertainty are inevitable, such
systems frequently appear in broadcast communications, artificial intelligence,
science and engineering, and neural networks. FG offers a versatile mathematical
framework for expressing ambiguous relationships by permitting vertices and
edges to have degrees of membership. Shi et al. (2024) provide a thorough
summary of current advances in FGs.

Interval-valued fuzzy sets (IVFSs) extend classical fuzzy sets by replacing single
membership values with intervals, thereby capturing higher levels of uncertainty.
The fusion of IVFSs with graph theory was initially formulated by Hongmei and
Lianhua (2009). Subsequently, Akram and Dudek (2011) introduced several
algebraic operations on IVFGs, while Pal and Rashmanlou (2014) investigated
structural properties of highly irregular IVFGs. To further enhance modeling
capability, Jun et al. (2011) proposed cubic sets, which combine fuzzy sets and
IVFSs to represent complex uncertainty patterns that cannot be handled by
conventional fuzzy models alone. Building on this concept, Rashid, Yaqoob,
Akram, and Gulistan (2018) introduced CFGs. After identifying limitations in the
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original definitions, Muhiuddin et al. (2020) provided revised and consistent
formulations. Since then, several structural characteristics of CFGs have been
examined, including connectivity and connectivity indices (Jun et al., 2011),
regularity (Muhiuddin ez al., 2022), bridges (Krishna et al., 2019), and planarity
(Rao et al., 2024). Due to their enhanced flexibility, CFGs have been widely
applied in modeling complex systems such as image processing, economic
networks, traffic flow, and decision-support environments.

Another important extension is intuitionistic fuzzy sets (IFSs), introduced by
Atanassov (1999), which characterize uncertainty using both membership and
non-membership degrees. Parvathi and Karunambigai (2006) extended this
framework to IFGs, allowing simultaneous representation of acceptance and
rejection in network structures. Later, Ismayil and Ali (2014) proposed interval-
valued intuitionistic fuzzy graphs to further accommodate imprecision. The
concept was advanced by Muneeza and Abdullah (2020) through IFSs, integrating
cubic and intuitionistic representations. This evolution led to the development of
ICFGs in 2021, enabling richer modeling of uncertainty in graph-based systems.
More recently, Fang et al. (2023) introduced planarity concepts for ICFGs,
extending their applicability to complex topological and decision-making
problems.

Parallel to these developments, MCDM methods have been extensively employed
to evaluate alternatives involving multiple, often conflicting, criteria. MCDM
supports decision-makers by incorporating both quantitative and qualitative
factors with assigned importance weights. Popular approaches include the
Analytic Hierarchy Process (AHP) (Mahad, Yusof, & Ismail, 2021), the
Technique for Order Preference by Similarity to Ideal Solution (TOPSIS)
(Amudha et al., 2021), and the Weighted Aggregated Sum Product Assessment
(WASPAS) method (Zavadskas et al., 2013). To handle vague and uncertain
relationships among criteria and alternatives, Zavadskas, Turskis, and Vilutiene
(2010) proposed the ARAS method, which was later extended into fuzzy
environments by Turskis and Zavadskas (2010).

Motivated by the growing need to integrate advanced FG structures with decision-
making frameworks, this study develops an ICF-ARAS method. The proposed
approach embeds the ARAS technique within the environment of ICFGs, enabling
more robust handling of uncertainty, hesitation, and interval information in
complex decision scenarios. Consequently, the method provides an effective tool
for practical applications where both structural relationships and multi-criteria
evaluations must be addressed simultaneously.

Social Science Multidisciplinary Review Vol 3(2): 2025



Faculty Recruitment using Intuitionistic Cubic Fuzzy Graphs | 6

2. PRELIMINARIES

Definition 3.1. AFS L on X # @ is prescribed by a membership function
v:X - [01]

It can be represented as

L= {(us ¥ (uy)): us €X}.

The support and support length of L are defined as supp(L) ={us €X| ¥
(us) # 0} and s(L) =|supp(L)|, respectively. The core and core length of
L are defined as:

core(L)= { us€ X | ¥ (x)=1}and c(L) = |core(L)|,

respectively. The height of L is defined as A(L) = max { ¥ (us) | us € X}.
The fuzzy set L is called normal if A(L) = 1.

Definition 3.2. A FG over X # @ is a pair (P, Q), where P and Q represent
the fuzzy set FS on X and X x X, respectively. It is prescribed by a
membership functions ¥, : X — [0, 1]Jand ¥q: X x X — [0, 1], such that

WQ (U.s‘*l, us) =< 1’1111’1{ TP(US*I); yIP(US)}, VUs-1, Us EX},
where Q is a fuzzy relation on P.

Example 3.3. Let P and Q be the FSs on U = {v, w, x}, and U x U, respectively.
The fuzzy membership values are given in Tables 1 & 2, respectively. The
graphical representation of FG is shown in Figure 1.

Table 1: AFS PonU

U Vv w X
P 0.7 0.3 0.5

Source: Author’s own
Table2: AFS Qon Ux U

NEUx U W Wx Vx
Q 0.2 0.3 04

Source: Author’s own

Social Science Multidisciplinary Review Vol 3(2): 2025
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Figure 1: A FG on U

Source: Author’s own

Definition 3.4.An IVFG R’ on X is a pair (P, Q), such that P'= [¥p~, ¥p] and
Q'=[¥, Vo'l are IVFSs on X and X x X, respectively as ¥p": X — D [0, 1]

and ‘PQ’ : XXX —>DJ[0,1]so that Vos-1, vs € X, (Akram and Dudek, 2011)
Yo (vs—1, 0s) <min {¥p (vs-1), Pr (Vs)}, VUs—1, Us EX

Yo (vs—1, vs) <min {Pp" (vs-1), Pp" (Vs)}, VUs-1, s EX,

where Q' is a fuzzy relation on P".

Example 3.5. Let U= {/, m,n}. We define IVFSs.P'and Q' on U and
UxU, respectively, as defined in Tables 3 & 4. The graphical
representation of The IVFG R’ = (P’, Q") is shown in Figure 2.

Table 3: An IVFS P’ on X

U L M N
P’ [0.2,0.5] [0.6,0.8] [0.5,0.9]

Source: Author’s own
Table 4: An IVFS set Q' on Ux U

N CcUxU In Mn Lm
Q' [0.2,0.4] [0.4,0.8] [0.1,0.4]

Source: Author’s own

Social Science Multidisciplinary Review Vol 3(2): 2025
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Figure 2: An IVFG on U

[0.509]

[0.4,0.8]

Source: Author’s own
Definition 3.6. A cubic set (CS) C on X is prescribed by mappings
YVe=[¥Y, ¥ ]:X—D[0, 1] and ¥'.: X—[0, 1]

where Pc and %' is an IVFS and FS on X, respectively. A CS can be
represented as

C = {(us, [Yc (9 Y™ (us)], P.” (us)): us EX},

where [ ¥c (vs), e (vs)] and Pe are the interval-valued fuzzy membership
value and fuzzy membership value at vy, respectively.

The support and support length of C is defined as supp(C) = {us € X | Yo (us)
#0, Y'c # 0} and s(C) = |supp(C)|, respectively. The core and core length of C
is core(C) = {us € X | Yo (us) =1, ¥c =1} and c(C) = |core(C)|, respectively.
The height of cubic set C is  h(C) = ([A~(C),R* (O], (C)) =
([max - (us), max e+ (ug)], max s (ug).) The CS is called normal if
h(C) =1.

P* = {([¥5(0s), W3- (W), ¥} oo s

Q* = {[1/15* (vs—1' vs)r lpg* (vs—li vs)]r 1/)’Q* (vs—ll vs)}:
are CSs on U and U x U, so that

1/)6* (vs—lv vs) < mln{l/);* (vs—l); l/);* (US)}

Social Science Multidisciplinary Review Vol 3(2): 2025
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1»03* (vs—ln Us) < min{l,b;'* (vs—l)v l,l);* (vs)};
Yo Ws—1,v5) < min{yp: (Vs—1), Pp- (05)}.

Example 3.7: Suppose U= {/, m, n}. The membership values of CS
P* on U and Q* on UxU are given in Tables 5 & 6. The CFG
corresponding to the above data is shown in Figure 3.

Table 5: ACSon U
U L M N
P* ([0.2,0.61,0.5) ([0.3,0.91,0.2) ([0.4,0.85]1,0.64)

Source: Author’s own
Table 6: ACSonU x U

M*cUxU Im Ln mn
o* ([0.2,0.5],0.15) | ([0.3,0.77],0.2) ([0.14,0.58],0.49)

Source: Author’s own

Figure 3: A CFG on U

([0.2,0.6],0.5)

m

([0.3,0.91,0.2) ([0.4,0.85),0.64)

([0.14,0.58],0.49)

Source: Author’s own

Definition 3.8. According to Atanassov (1999), Let X be a non-empty set.
An IFS I over X is defined as

I= (US; uvl (Us); VVI(US));

where 411 X — [0, 1], and v'1: X — [0, 1], denote the membership and non-
membership function, respectively, such that for all v, € X, 0 < u™1(vs) + V'i(vs)

Social Science Multidisciplinary Review Vol 3(2): 2025
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<L

Definition 3.9. As per Muneeza and Abdullah (2020), an intuitionistic
cubic fuzzy sets (ICFSs), Ic over a non-empty set X is defined as:

Ie={(s (T, 7] 1, (V1 V1] VD) os EXG,

where ([¢'1, &1, &1 and ([v1, vT'], v1) are the cubic numbers
and denotes the membership and non-membership grades of Ic.

Definition 3.10. (Pramanik, ez al., 2016) Let X be a non-empty set, an
ICFGRisa pair (f’, Q) , where
P = {(vs, ([Ftp (o), ip (W], Ep (0s) ), ([Vp (vs), viE (v, Ve (v5)))}
is an ICFS on X and
= i+
(Vs 1, V5), ([l'lQ ((vs—jﬂ 7;5): 1 2%) ((Ws-1, 175)],) ‘
0= Po((Vs—1, vs)
\ ([175((”5—1'vs)'va—((vs—livs)]')

Vp((Vs-1,Vs)
is an ICFS on X x X such that for every vs-1, vs € X,
Fig (1, v5) < min{fiy (vs_1), 7 (05) },
13 (V51 v5) < min{iif (1), HE (w5 ),
Tio((Ws—1,vs) < min{fip (vs_1), fp(vs) 3,
Vo ((Vs—1,v5) = max{Vp (vs_1),Vp (v5)},
Vg ((Vs—1,vs) = max{vp (vs_1), v (v5)},

Vp((Vs—1,V5) = max{Vp(vs_1), Vp(vs)}

Definition 3.11. (Muneeza and Abdullah, 2020) Let Ic be an intuitionistic
cubic fuzzy number (ICFNs) defined as (([¢™1, #"1"], «™0), ([v1, V1], v7D)).
Then, score function of I¢c is defined as:

S(,) = Iv11_+lv11++lv11;V1_+V1+—V1’

such that —1 < S(I,) < 1.

The accuracy function /. is given as:
_ Hp I RV V4

H(,) = ' ,

Social Science Multidisciplinary Review Vol 3(2): 2025
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such that —1 < H(I.) < 1.
4. ARAS TECHNIQUE ON ICFG

The algorithm used by the ICF-ARAS method, facilitating the solution of MCDM
problems in an ICF environment, is developed in this section. It requires experts
to provide the significance weights of criteria to establish the methodology. The
ICF choice matrix is then used, which is normalized according to the type of
criterion. The optimal function is determined by adding the ideal solution and
computing the weighted matrix of norms. Finally, the utility level is calculated
based on the accuracy measure of each option, and alternatives are prioritized
according to their utility.

Step 1: Constructing ICF decision matrix

For the alternatives Py, P,...., P, and the criteria Cy, C, ..., C,, i.e., benefit
QPand cost (non-benefit) criteria Q*? the ICFDM is represented as

M = [< (o i) i), (vip vishvig) >, s

where ([,ui']-, ufj],uij) and ([vi},v;;],vij) represents the membership and non-
membership grades of the edge between represent the membership and non-
membership grades of the edge between the i-th alternative and the j-th criterion,
respectively eq. (1).

M=
(i) ), i 0 000) (i i) ), (B Vil v2)) o (i il ), (Vi W], 910))
iz i) fo), V5950920 Uiz o), (52 Vb)) o (i) i), ([ V) V)

W o), (s T V) (s i o), (G il T (s i, (s o] )
(1
where i =1,2...,mandj=1,2...,n.

Step 2: Rescaling the ICFDM

The normalization of ICFDM is given below in eq. (2):

M =
(i) ao (i) (AR, (el i) (UG ] d, (55 7] )
(T B e (EE ) ((EEh ) (Bl m) (@G, (5 3 7)

(A s R B (7 0 el R (U ) e (T T )

(2)

Social Science Multidisciplinary Review Vol 3(2): 2025
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where for beneficial criteria Q?, the values are given in eq. (3):

€)

-~ = ~+ -
= i ¥ Hij o— _ Wij = Vij + Vij < Vij
:ul] ~uuz] S~,9nul]_ 5> VL]_ P ] &

Where,

5

§= Zﬁl(.uu +.u1] + :ul] +VL] +V +V1])

For cost criteria (Q?), the values are given in eq. (4)
1/ 1/ 1 1 /v 1,
= /lu'l.] °F _ /H:} T _ /#ij = vlj SF o v?)‘ o /Vij

"] Sr U Sr [y S ’ 19 - S ’ l] S 'VLJ Sr

4)
Where,
o 1
S (i + + s+ + )

Step 3: Adding best alternative

The best alternative is determined by considering the largest (for benefit) and
smallest (for cost) value of the ICFN for each column. The (m + 1 X n) matrix is
given in eq. (5)

( [, Fm fan)s (V01 Vol] Vo )) (([lﬁzvﬁﬁz]vﬁvoz)v ([17—(;:2"3072]"7—;2)) (([/ﬁm@]rﬁi)l([ﬁrﬁ]rﬁ))
( 1411 1411] .“11) ([Vn V11] 2 )) (([@v@]vﬁ;)v ([ﬁ.ﬁ]-ﬁ)) (([ﬁ.ﬁ]'ﬁ).([ﬁ.ﬁ]'ﬁ))
(([um.um].uml).([vm. il Vo)) (U i) o), [z Vs L V) e (s 5] ), (s Vo) Vi) )
(%)

For Benefit criteria (Q?), we have eq. (6)

(@ @) o, (T 73 7o) ) =

[(max((, 51, %,))  (min([75, 73], 7)) (©)
For Cost criteria (Q?), we have eq. (7)

(e ) . (50,70, 7o) ) =

|(min([i@5, &3], %)) (max([7, 751, %) | ()
j=12..,n

Social Science Multidisciplinary Review Vol 3(2): 2025
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Step 4: Determining the weighted normalized ICFDM
The entropy weights suggested by the experts in eq. (8)
6= (61,62,...,6-” ) (8)

We get the weighted normalized ICFDM given in eq, (9) by multiplying @ with
M in eq. (5).

W=
[ (@0 &) @ (o B) Bod) (5 &) @), (BB Bo)) o (1G5 G o, (B ). mm)
| (1 &) &) ([ﬁu A (@@l (bt f) - (@Gl a, ([ﬁm ZANS)
[ o ), ), ([ﬁml B o)) (([:ﬁz,:ﬁz].d;’z)..([é,iz,ﬁl],é;o) S (A ([ﬁm Fon] o))

)
such that

(@ @) &), 5. B3] B)) = o (08551 ), (15, 51, 9))
Step 5 Optimality function

For each row for i=1, 2,,m, it is computed as:
07 = (([@a, 631,07, 051,85
= Y7 &, Oy = Xy @, Op = X7, &,
Q?t =Xis1 Bt;' Q;l =21 E;JL' Q;l = Z?:lﬁl;
The accuracy value for each alternative IP; for i=0,1, 2..., is computed as:

’p’ _ ()?1+051+@1_@;L+Q;L_@l
1 - .
3

Step 6: Determining the utility degree

. ~ P
For each alternative, it is calculated as U, = IP;L , so that P, = max P;.
0

Step 7: Ranking the alternatives

Alternatives are ranked by comparing their utility degrees in descending order.
The alternative with the highest utility is considered the best. The flowchart of the
proposed technique is presented in Figure 4.

Expert judgment, based on institutional priorities and academic standards,
provides the criterion weights for academic placement decisions. Although the

Social Science Multidisciplinary Review Vol 3(2): 2025
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current study assumes consensus among decision-makers, the framework can
naturally accommodate group decision-making mechanisms, such as aggregated
expert opinions. Its flexibility also allows alignment with institutional recruitment
policies and collective governance practices typical of higher education
institutions.

5. DECISION-MAKING FRAMEWORK FOR TEACHER SELECTION

The selection of teachers for an educational institution is a critical process, as it
involves consideration of multiple factors, including academic qualifications,
teaching experience, communication and research abilities, and student and
classroom management. This process is a major determinant of the quality of
teaching delivered to students. Often, the selection process requires subjective
judgment and involves a certain degree of risk.

Institutions typically implement rigorous procedures to ensure that selected
teachers possess not only strong academic credentials but also a genuine
inclination toward teaching and the ability to engage and inspire their audience.
The teacher selection process generally involves multiple steps. In this study, four
candidates, P1, P2, P3, and P4 advance to a detailed evaluation stage.

To identify the most suitable candidate, the decision-makers evaluate them based
on four key criteria:

C1: Qualification

C2: Interview results

C3: Teaching experience
C4: Communication skills

It is important to note that faculty recruitment inherently involves human
judgment, which can be influenced by cognitive biases, institutional preferences,
and varying interpretations of evaluation criteria. The intuitionistic cubic fuzzy
(ICF) representation allows decision-makers to express hesitation and partial
belief, thereby reducing the rigidity of crisp scoring systems and mitigating the
impact of individual bias. By accommodating both membership and non-
membership degrees, the proposed framework provides a more realistic and
flexible representation of expert assessments.

Social Science Multidisciplinary Review Vol 3(2): 2025
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Figure 4: Flow Chart of ICFG based ARAS Technique

For cost criteria,
For beneficial criteria, The ICFDM is normalized

The ICFDM is normalized using Equation 5 and 6
using Equation 3 and 4.

For cost criteria, For beneficial criteria,
The ideal best The ideal best
alternative is alternative is

determined by finding determined by finding
minimum of the maximum of
membership value and membership value and
maximum of non- minimum of non-
membership valueof mambership value of
ICFN in each column ICFN in each column

e
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Suppose the decision-maker expresses his or her preference regarding candidates
for criteria by using ICFN as given in Figure 5.

Figure S: Intuitionistic Cubic Fuzzy Decision Graph of Alternatives and
Criteria

P1
(10.7,0.8],0.3),
{[0.1,0.21,0.5)

cL
(10.2,0.39),0.7),
(10.4,0.6],0.21)

P2
([0.6,0.71,0.5),
([0.2,0.3],0.4)

c2
(10.7,0.72],0.1),
([0.19,0.21],0.7)

P3
([0.1,0.4],0.2),
(0.35,0.551,0.45)

c
(10.4,0.51,0.38),
([0.2,0.48],0.42)

P4
(10.2,0.8],0.3),
([0.15,0.2],0.7)

ca
(10.1,0.21,0.7),
([0.3,0.51,0.2)

Source: Author’s own

The ICFN is significant since it handles uncertainties more precisely and in
intuitionistic numbers, which are cubic numbers including the membership and

non-membership values. The following points can be taken under consideration to
model this problem:

e The vertices of the graph represent four candidates and four selection criteria.

e C(Candidate vertices possess membership values in the form of ICFSs,
representing current and previous minimum and maximum membership and
non-membership values regarding the likelihood of hiring.

Social Science Multidisciplinary Review Vol 3(2): 2025
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e Criteria vertices also have membership values in ICFS form, expressing the
institution’s expectations for each criterion.

An edge exists between a candidate and a criterion if the candidate meets the
criterion; the edge membership value indicates the degree of fulfillment.

The ARAS technique is then applied to the ICFDG given in Figure 5. The best
optimal candidate for the teaching position is then selected. The breakdown of the
computation is illustrated as below:

Step 1: The following Table 7 describe the values given by the decision-makers.

Table 7: Intuitionistic Cubic Fuzzy Decision Matrix of Alternative and
Criteria

Alternative C, C, C3 C,
s

P, (([0.2,0.31], O.25),>

([0.6,0.7],0.1),
([0.05,0.2],0.2) )

([0.3,0.45],0.3),
([0.1,0.2],0.4) )

([0.1,0.2],0.2),
([0.1,0.19],0.4) )

([0.1,0.15],0.15)

(
P, ([0.2,0.35], 0.49),) (

([0.6,0.71,0.1),
([0.2,0.25],0.2) )

([0.4,0.5],0.35),
([0.15,0.2],0.3) )

([0.1,0.15],0.4),
([0.2,0.29],0.39) )

([0.1,0.3],0.2)

([0.3,0.55],0.2) ([0.17,0.2],0.4)) | \([0.2,0.4],0.41) [0.2,0.24],0.2)

P,

(

(
([0104]02)) ([01015 02))

(%

(
( (

Py (([0103]01)) (([0102]01))
( (

(
([0.2,0.7], 01)) ([015045] 02))

([0.2,0.21],0.21),
) ([0.1,0.2],0.2) ([0.1,0.22],0.4)

([0.05,0.15],0.3),
([0.15,0.2],0.18) )

[0.1,0.2],0.15)

Source: Author’s own
Step 2: The normalized ICF decision matrix is given in Table §:

Table 8: Normalized Decision Matrix of Alternatives and Criteria

Alternatives [ C; C3 Cy

P, ([0.0357.0.0554].) ([0.0088,0.1026],) ([0.0423,0.0634],) ([0.0239,0.0477],)
0.0446 0.0147 0.0423 0.0477
([0.0089,0.0375],) ([0.147,0.0293],) ([0.0141,0.0268],) ([0.0239,0.0358],)
0.0357 0.0587 0.563 0.0358

P, ([0.0357,0.0625],)
0.0875
([0.0357,0.0446],)
0.0357

[0.0088,0.1026],
( 0.0147 )
([0.0022,0.0293],)
0.0044

[0.0563,0.0704],
( 0.0493 )
([0.0282,0.0408],)
0.0549

([0.0239,0.0358] ,)
(foottzina)|
0.0477
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P, ([0.0179,0.0536],) ([0.0147,0.0293],) ([0.0141,0.0563],) ([0.0239,0.0358],)
ookt ) |ttt ) | (fooiitirn ) | (oo |
0.0357 0.0587 0.0577 0.0477
P, ([0.0357,0.0375],) ([0.0293,0.1026],) ([0.0211,0.0634],) ([0.0119,0.0358],)
0.0375 0.0147 0.0282 0.0375
<([0.0268,0.0375],)> (([0.0147,0.0293],)) < ([0.0141,0.031],) ) ( ([0.038,0.04—77],) >
0.0321 0.0293 0.0563 0.0358

Source: Author’s own

Step 3: After the addition of ideal best alternative, the normalized decision
matrix is described in Table 9.

Table 9: Addition of Ideal Best Alternative in Normalized Decision Matrix

(
(

0.0375
[0.0268, 0.0375],

0.0147,
[0.0147,0.0293],

0.0282,
[0.0141,0.031],

0.0716,
[0.0238, 0.0477],

Alternatives C; C: C; Cy
Ideal best [0 0357, 0. 0625 0 088,0, 1026] [0 0563,0. 0704 [0 0239,0.0477, ])
0.0875, 0.0147, 0.0493, 0.0955,
0008900357] 0014700293] [0 0141, 00268 0023900358 )
0.0321 0.0293 0.0549 0.0358
P, [0 0357, 0. 0554 [0 088, 0. 1026 0 0423,0. 0634-] 0 0239,0. 0477
0.0446, 0.0147, 0.0423, 0.0955,
[0 0089, 0. 0357 [0 0147,0. 0293 0 0141,0. 0268] 0 0239,0. 0358
0.0357 0.0587 0.0563 0.0358
P, 0 0357,0. 0625] [0 088, 0. 1026 0 0563, 0. 0704] [0 0239, 0. 0358]
0.0875, 0.0147, 0.0493, 0.0955,
0 0357,0. 0446] [0 022, 0. 0293 0 0282,0. 04—08] [0 0239, 0. 0716]
0.0357 0.0044 0.0549 0.0477
Ps 0 0179,0. 0539] [0.0147,0.0293 0 0141,0. 0563] [O 0239, 0. 0358]
0.0179, 0.0147, 0.0282, 0.0477,
0 0536,0. 0982] [0.0249,0.0293 0 0282, 0. 0563] [0 0477,0. 0573]
0.0357 0.0587 0.0577 0.0477
P, [0.0357,0. 0375 < [0 0293, 0. 1026 > ( 0 0211,0. 0634-] > ( [O 0119, 0. 0358] >

|

0.0321

)

0.0293

0.0563

0.0358

Source: Author’s own

Step 4: The weights suggested by decision-makers assigned to each criterion are:

@& = (@@, @3 @, )= (0.2,0.35,0.15,0.3)

such that Z}Ll @; = 1. The weighted normalized decision matrix is in Table 10
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Alternatives Ci C: Cy
Ideal best ([0 .0071,0.0125], ) ( [0.0308,0.0359], ) 0 0085 0 0106] ([0.0072,0.014—3],)
0.0175 0.0051 0.0074 0.0287
([0 .0018,0.0071], ) ( [0.0051, 0. 0103]) [O 0021,0. 004 ([0 0072,0.0107,])
0.0064 0.0103 0.0082 0.0107
P, [0.0071,0.0111], [0.0308,0.0359], 0 0063, 0. 0095] [0.0072,0.0143],
( 0.0089 ) ( 0.0051 ) 0.0063 ) ( 0.0143 )
([[0 .0018,0.0071] ) ( [0.0051,0.0103], ) 0 0021,0.004], ) ([0.0072, 0.0107],)
0.0071 0.00205 0.0084 0.0107
P, ([0 .0071,0.0125], ) ( [0.0308,0.0359], ) ( [0.0084,0.0106], ) ([0.0072,0.0107],)
0.0175 0.0051 0.0074 0.0287
[[0.0071, 0.0089] [0.0077,0.0103], [0.0042,0.0061], [0.0072,0.0215],
( 0.0071 ) ( 0.0154 ) ( 0.0082 ) ( 0.0143 )
P, ([([0 .0036,0.0107] ) ( [0.0051,0.0103], ) ( [0.0021,0.0084], ) ([0.0072,0.0107],)
0.0036 0.0051 0.0042 0.0143
0.0107,0.0196] [0.0087,0.0103], [0.0042,0.0084 0.0143,0.0172],
([ 0.0071 ) ( 0.0205 ) ( 0.0087 g ) ([ 0.0143 ] )
P, ([0 .0071,0.0075] ) ( [0.0103,0.0359], ) ( [0.0032,0.0095], ) ([0.0036, 0.0107],)
0.0075 0.0051 0.0042 0.0215
([0 .0054,0.0071], ) ( [0.0051,0.0103], ) ( [0.0021,0.0047], ) ([0.0071, 0.014-3],)
0.0064 0.0103 0.0085 0.0107

Source: Author’s own

Step 5: The optimality value and accuracy value for each alternative is in Table

1.

Table 11: Optimality Function Q

Alternatives P;

Ideal best [0.0536,0. 0733 0.0587 0.05643
( 0.0162,0.0321],0, 0356>

P, [0.0515,0.0708],0.0346 0.042
( 0.0162,0.0321],0, 0467>

P, [0.0535,0.0697],0.0587 0.0525
( 0.0262,0.0468],0, 045)

P, [0.018,0.0401],0.0272 0.0174
( 0.0379,0.0555], 0, 0506>

P, [0.0242,0.0636],0.0383 0.0356
( 0.0197,0.0364], 0, 0359)

Source: Author’s own

Step 6: The utility degree for each alternative is shown in Table 12.

Table 12: Utility Degree and Ranking of Alternatives

Alternatives

U;

Ranking

Py

0.7443
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P, 0.930 1
P, 0.3083 4
P, 0.6309 3

Source: Author’s own
6. DISCUSSION AND COMPARATIVE ANALYSIS

The ICF-ARAS framework offers theoretical and practical advantages over
traditional fuzzy MCDM methods:

6.1. Theoretical advantages

e Uses ICFGs to represent membership, non-membership, hesitation, and
interrelationships among criteria and alternatives.

e Improves interpretability by visualizing structured relationships.
6.2. Practical advantages

e ARAS provides a direct utility-based evaluation, unlike TOPSIS which relies
on distance measures.

e [CF decision matrices incorporate interval-valued assessments to handle
uncertainty.

o C(Calculation of alternative optimality and utility ensures transparent
prioritization in uncertain environments.

The obtained utility values are U;(P,) = 0.930, U;(P,) = 0.7443,U;(P,) =
0.6309, U;(IP3) = 0.3083. Therefore the Candidates are ranked as : P, >
P, =P, = Ps.

This outcome shows that candidate (IP,) has the best overall fit to the teaching job,
primarily because of better performance in a variety of criteria when considered
within an intuitionistic cubic fuzzy context. The rather lower value of (IP3)
indicates poorer consistency of performance and greater values of hesitation which
prove the sensitivity of the offered model to the changes in both membership and
non-membership levels. The findings affirm that the ICF-ARAS model can
accurately identify slight differences amongst the options even with inaccurate
assessments, which ensures that there is a steady prioritization mechanism
employed during decision making in a highly uncertain environment.

To further examine the validity of the proposed approach, the same dataset was
analyzed using two existing techniques, namely ICF-WASPAS (Senapati, et al.,
2021) and ICF-TOPSIS (Muneeza et al, 2021). All methods produced the
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identical ranking order P, > P, > P, > P;. which confirms the stability and
correctness of the proposed ICF-ARAS method.

The obtained results of the ranking are the same, but the proposed approach has a
number of notable benefits. In contrast to ICF-TOPSIS where the distance is used
to identify the proximity of the solutions to an ideal solution and an anti-ideal
solution, the ARAS-based architecture assesses each alternative in a first place
with the help of direct comparison with an ideal reference, which leads to a higher
interpretability level of the utility. This property finds its application especially
during the process of explaining decisions to the stakeholders. In addition,
ICFARAS frameworks have a simpler computational structure with an equivalent
strength of discrimination compared to ICF-WASPAS, which involves the
hybridization of additive and multiplicative aggregation schemes. The
comparative results are shown in Table 13 and Figure 6, which further emphasize
that the previous techniques had the same ranking as our proposed technique. This
shows that the proposed technique is practical, adaptable, and significant.

Table 13: Comparison Analysis

Alternatives ICF-WASPAS ICF-TOPSIS ICF-ARAS
Score | Ranking | Score | Ranking | Score | Ranking
P, 0.7072 | 2 0.7803 | 2 0.7443 | 2
P, 0.8459 | 1 1.000 |1 0930 |1
P, 0.1576 | 4 0.2585 | 4 0.3083 | 4
P, 0.5411 | 3 0.6418 | 3 0.6309 | 3

Source: Author’s own

Lastly, using ICFGs helps the proposed structure to ensure that the relationship
between criteria and candidates is maintained, as most of the conventional cubic
fuzzy MCDM ignores these relationships. Such structural modelling has important
descriptive and analytical strengths of the framework. Therefore, the comparative
analysis confirms that the suggested ICF-ARAS method is compatible with the
already existing methods and even more interpretable, structurally expressive, and
efficient in calculation, which makes it a strong instrument of complex real-world
problems of decision-making. Here is the full, reviewer friendly, and similarity-
free conclusion section to your paper on ICF-ARAS over ICFGs.
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Figure 6: Comparison of ICF-ARAS Technique with other Techniques

P1 P2 P3 pa

TOPSIS WASPAS ARAS

Source: Author’s own
7. CONCLUSION

For detecting occupational fraud, organizations use various techniques, tools, and
procedures. These include internal audits, external audits, internal control systems,
forensic audits, etc. Whistleblowing is considered one of the most effective tools
for fraud detection. A whistleblowing system consists of several components, such
as anonymous reporting channels (ARC), job security (JS) for whistleblowers,
previous outcomes of reported whistleblowing events (PWB), and whistleblowing
incentives (WBI). These attributes play a significant role in making the system
more effective and result oriented.

This paper presented a new decision-making model, which is founded on
combining an ICFG with the ARAS technique to deal with uncertainty, hesitation,
and vagueness related to the real-world needs of MCDM. The intuitionistic cubic
structure, in contrast to classical fuzzy and intuitionistic fuzzy models,
simultaneously represents degree of interval-valued membership, non-
membership, and degree of precise hesitation under intuitionistic cubic nature,
thus a more detailed and adaptable mathematical summary of human judgments.
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The ability and applicability of the intended ICF-ARAS approach was
demonstrated by a realistic case study involving faculty recruitment in which four
candidates were compared based on various qualitative parameters. The
framework maintained the structural dependencies between decision elements by
modeling the candidate and criteria as nodes in an ICFG and expressing the
relationships between them as intuitionistic cubic fuzzy edge weights. The
acquired ranking (P, > P; > P, > P3) evidenced that the suggested method can
provide consistent and interpretable results even when ambiguous and partially
credible information is introduced. A comparative study with the already existing
methods, i.e. ICF-WASPAS and ICF-TOPSIS shared the same ordering results,
thus affirming the accuracy and consistency of the proposed model. Nevertheless,
ICF-ARAS approach also has more benefits related to computational simplicity,
clear aggregation of preference data, and the potential to retain graph-based
relational knowledge, which is not straightforwardly considered in the majority of
cubic fuzzy MCDM models.

In practical terms, the suggested model is highly flexible and can be successfully
implemented in a range of areas of application, such as personnel selection,
supplier assessment, healthcare diagnostics, project prioritization, and risk
evaluation. The inherent interdependence of decision criteria and the imprecision
of evaluations in these situations makes the model especially relevant as future
studies aim to design dynamic ICFG-based ARAS models that support time-
varying preferences, the introduction of group decision-making logic that
considers the opinions of heterogeneous experts, and the consideration of hybrid
extensions that allow entropy-based or optimization-based determination of
weights. Furthermore, the theoretical properties of the ICFG operators and their
effects on the consistency of the decision are promising directions of future
research. The expected impacts of these extensions are that it will expand the
usefulness of the proposed framework and increase its usefulness in large and
complicated decision situations.

The in-depth case of this article only includes few candidates and criteria, which
might limit the generalizability. But the main purpose is to prove the applicability
and validity of the proposed ICF-ARAS model rather than empirical
generalization. Future research could also use this framework with bigger
datasets, multiple departments, or at diverse institutions to test its efficacy.
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