Al-Driven Decision Support Systems for Software
Architecture: A Framework for Intelligent Design
Decision- Making (2025)

Shawaiz Arif, Meer Usman Amjad, Muhammad Faisal

Faculty of Computer Science & IT, Superior University Lahore, Pakistan
Correspondence:

Shawaiz Arif: Shawaizarifl@gmail.com

Article Link: https://journals.brainetwork.org/index.php/jcai/article/view/122

DOI: https://doi.org/10.69591/jcai.3.1.1
Citation: S. Arif, M. U. Amjad, and M. Faisal,

ISSN (P):3007-3049
JCAI seEmarer - «AT-Driven Decision Support Systems for
Software Architecture: A Framework for
JOURNALOF Intelligent Design Decision-Making,” Journal of

COMPUTING AND ARTIFICIAL . epe - .
INTELLIGENCE Computing and Artificial Intelligence, vol. 3, no.

1, pp. 1-32, 2025.

Conflict of Interest: Authors declared no Conflict of
Interest

Acknowledgment: No administrative and technical
support was taken for this research

Article History

Submitted: Mar 01, 2025
Last Revised: Apr 20, 2025
Accepted: May 12, 2025

Volume 3, Issue 1, 2025

Funding
No

Copyright
The Authors

Licensing

An official Publication of

licensed under a Creative Commons Beyond Research Advancement &
Attribution 4.0 International License. Innovation Network, Islamabad, Pakistan

mailto:Shawaizarif1@gmail.com
https://journals.brainetwork.org/index.php/jcai/article/view/122
https://doi.org/10.69591/jcai.3.1.1
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Al-Driven Decision Support Systems Page |2

Al-Driven Decision Support Systems for Software
Architecture: A Framework for Intelligent Design Decision-
Making (2025)

Shawaiz Arif't, Meer Usman Amjad *, Muhammad Faisal*
1 Faculty of Computer Science & 1T, Superior University, Lahore, Pakistan

Abstract

Software architecture decision-making is a critical phase in the software development
lifecycle, often constrained by time, complexity, and uncertainty. As software systems
grow in scale and dynamism, architects require intelligent tools that can assist in
evaluating architectural alternatives, predicting quality trade-offs, and automating
design suggestions. This paper explores the integration of Artificial Intelligence (Al)
into the software architecture decision-making process. We review existing Al-driven
architectural tools, classify relevant Al techniques (including expert systems, machine
learning, and large language models), and propose a conceptual framework for an Al-
based Architecture Decision Support System (AIDSS). The proposed system aims to
enhance decision quality by learning from historical design data, recommending
optimal patterns, and ensuring traceability. We demonstrate the potential of the
framework through example use cases and discuss its applicability in real-world
architectural practices. A visual model of the system architecture is presented. This
paper provides theoretical insights and practical directions for implementing Al-
assisted decision-making in software architecture.

Keywords: Software Architecture, Artificial Intelligence, Decision Support System,
Architecture Decision Records (ADR), Large Language Models, Machine Learning,
Design Automation, Al in Software Engineering.

Introduction

In modern software engineering, software architecture significantly influences
system success, scalability, maintainability, and performance. As software systems
grow more complex—particularly with distributed systems, cloud-native
architectures, and Al-integrated applications—the need for timely and rigorous
architectural decision-making becomes critical. Architects must consider multiple
factors such as performance, security, cost, flexibility, and compliance, often under
tight deadlines and with limited information [1].

* Corresponding Author: Shawaizarifl @gmail.com

JCAI

Journal of Computing and Atrtificial Intelligence Volume 3, Issue 1, 2025

mailto:Shawaizarif1@gmail.com

Al-Driven Decision Support Systems Page |3

Traditionally, architectural decisions have relied on expert intuition, experience,
and manual evaluation of trade-offs. While these approaches benefit from human
contextual understanding, they are inherently subjective, inconsistent, and difficult to
scale in large, fast-moving environments. Furthermore, decisions are rarely recorded
formally or reused systematically, resulting in repeated mistakes, undocumented trade-
offs, and loss of architectural knowledge over time [2].

Artificial Intelligence (Al) has emerged as a transformative tool in software
engineering, spanning requirements analysis, testing, and maintenance. In architecture,
Al can shift decision-making from a heuristic, human-driven activity to a data-driven,
knowledge-enabled process. Techniques such as machine learning, natural language
processing, and large language models (LLMs) can support pattern recognition,
prediction, trade-off analysis, and architectural style suggestion [3][4].

This study introduces a conceptual Architecture Decision Support System
(AIDSS) that leverages Al to assist architects in the design stage. The system is
designed to:

1. Learnfrom historical Architecture Decision Records (ADRs) and design histories
Suggest architectural styles and patterns based on system context

Analyze and predict quality attribute trade-offs

Provide explainable recommendations for transparency

Ensure traceability of decisions throughout the development cycle

arowd

This framework avoids repeating benefits and limitations in other sections and
focuses on the novelty of Al integration in architectural decision support.

Literature Review

The increasing sophistication of software systems and the need for high-quality
architectural decisions have led to the incorporation of Artificial Intelligence (Al) into
software architecture practice. The section overviews the history of Al application in
software architecture, the types of Al techniques utilized, and the upcoming challenges
recognized in recent literature.

Evolution of Al in Software Architecture

The last few years have seen a considerable growth in studies examining the ways
in which Al can support software architects in design, decision-making, and
documentation activities. Bucaioni et al. performed an extensive systematic literature
review of Al application in software architecture between 2019 and 2024, determining
14 different application domains, such as design automation, architecture recovery,
pattern suggestion, and trade-off analysis [3]. Their research also highlighted six main

JCAI

Journal of Computing and Atrtificial Intelligence Volume 3, Issue 1, 2025

Al-Driven Decision Support Systems Page |4

challenges: explainability, adaptability, data availability, lifecycle integration,
traceability, and technical debt awareness.

Previous contributions by Jansen and Bosch focused on how to represent
architecture as a sequence of design choices instead of mere static models [2]. This
transition towards decision-based architecture provided the grounding for Al systems
supporting dynamic, context-based decision-making instead of inflexible,
predetermined templates.

Al Techniques in Architectural Decision Support

Al techniques used in software architecture can be generally classified into the
following:

1. Rule-Based Expert Systems: These systems store architectural knowledge as IF—
THEN rules. While restricted in learning and scalability, they are beneficial in thin
areas and legacy choice situations [5].

2. Machine Learning (ML): ML models are capable of forecasting architecture
performance measures or suggesting appropriate patterns from past data.
Supervised learning has been employed to convert architectural configurations
into system quality properties like reliability or latency [6].

3. Natural Language Processing (NLP) and Large Language Models (LLMs): LLMs
like GPT-4 and Codex have shown potential in understanding and generating
architecture decision records (ADRs), documentation, and pattern suggestions. A
recent study by Schmid et al. reported successful use of LLMs for classifying
design decisions and generating architecture views from textual requirements [7].

4. Case-Based Reasoning (CBR): CBR systems retrieve similar past architecture
cases to guide current decisions. This approach supports traceability and
justifiability of design choices [8].

Tools and Frameworks

Several tools have been proposed or implemented to operationalize Al-based
architectural support:

SmartArch: A tool that uses ML to support architectural design by analyzing system
logs and recommending changes [9].

DecisionArchitect: Captures architectural design decisions and relates them to quality
attributes, helping trace rationale [10].

GPT-based Plugins: Experimental integrations with tools like PlantUML, Zotero, and
Obsidian have enabled auto-generation of architecture diagrams and annotations from
prompts.

JCAI

Journal of Computing and Atrtificial Intelligence Volume 3, Issue 1, 2025

Al-Driven Decision Support Systems Page |5

However, many tools suffer from lack of explainability, limited domain generalization,
and poor integration with software engineering pipelines [3], [4].

Research Gaps and Future Directions
Despite the growing body of research, several open challenges persist:

1. Explainability: ML/LLM-generated suggestions are often “black-box” and lack
justifications.

2. Lifecycle Integration: Most tools focus on early design but ignore downstream

changes and feedback.

Dataset Scarcity: High-quality, labeled architectural decision data is limited.

4. Evaluation Frameworks: Benchmarks for comparing Al-driven decision tools are
lacking [4].

w

Proposed Framework

Al-Based Architecture Decision Support System (AIDSS) To assist software
architects in making accurate, consistent, and explainable decisions, we propose a
modular, feedback-enabled Al-Based Architecture Decision Support System (AIDSS).
The system combines rule-based logic, machine learning, and large language models
to support architectural planning and evaluation across the software development
lifecycle.

System Architecture Overview
The AIDSS architecture (see Fig. 1) consists of five core layers:
Input Layer

1. This layer ingests inputs from the software project, including:

2. Functional and non-functional requirements

3. Design constraints (e.g., performance limits, regulatory compliance)
4. Business goals and priorities

Data Processing Layer
This layer processes and structures diverse data sources to create a knowledge base:

1. Historical Design Data: Past architectural blueprints and documentation.

2. Architecture Decision Records (ADRs): Structured logs of past decisions and their
outcomes.

3. System Logs & Runtime Data: Useful for performance feedback and adaptation.

Al Engine
The core of the framework, the Al Engine integrates three Al approaches:

1. Rule-Based System: Encodes expert knowledge and domain-specific constraints.

JCAI

Journal of Computing and Atrtificial Intelligence Volume 3, Issue 1, 2025

Al-Driven Decision Support Systems Page |6

2. Machine Learning Module: Predicts quality attribute outcomes (e.g., latency,
availability) based on architectural configurations.

3. Large Language Model (LLM) Unit: Interprets natural language requirements and
suggests architectural styles or refactoring actions.

Decision Layer

1. The output layer provides actionable guidance to architects:

2. Suggested Architecture Patterns: E.g., Microservices, Event-Driven, Layered

3. Trade-off Analysis Reports: Quantified metrics for performance, scalability, cost,
etc.

4. Justifications & Traceability: Natural language explanations for
recommendations.

Feedback Loop

1. Acontinuous learning mechanism:

2. Captures architect responses to suggestions
3. Refines Al models over time

4. Ensures adaptability to evolving domains

Al Collaboration with Architects

Instead of substituting architects, AIDSS is a co-pilot enhancing human
decision-making. The system facilitates exploratory design, iterative refinement, and
rational justification, encouraging trust and accountability.

Implementation Considerations

1. LLMs suchas GPT-4 or Codex can be deployed using APIs (e.g., OpenAl,
Anthropic)

2. ML Training Data: Must be domain-specific and labeled (e.g., ADR + quality
outcomes)

3. Explainability: Techniques such as LIME or SHAP can improve interpretability
of ML outputs

4. Interaction between an architect and AIDSS for a microservices design.

Figure 1(a): As shown above, Praedico-Salvos is an ensemble machine learning
framework comprising three finely-tuned SVMs collectively reporting an accuracy of
88%.

JCAI

Journal of Computing and Atrtificial Intelligence Volume 3, Issue 1, 2025

Al-Driven Decision Support Systems Page |7

Figure 1: Architecture of the Al-Based Architecture Decision Support System (AIDSS),
showing the interaction between architects and the Al engine, including rule-based,
machine learning, and LLM modules.

Ings Larpet
| Requiremnents, Coosrunm

Bisioans Qodl)

Dala Proowamg Layer
(Mistoncsd Desgn Dats

ADGx, Rurtizie Loge)

e Y o b . Medel muw .5“?0' A
el Sivien My Lx . Wi -t Atoas, W
vrAar:) ..3‘.:1., e ot m.m'.'lm By wa ot Tradeofl Asaiyns, N

Jestificatinea) ‘

Feadback Lowp
(L0 Regpoasos
Muode. Bafnemment)

The top-level architecture of the proposed Al-Based Architecture Decision
Support System (AIDSS) is illustrated in Figure 1. This conceptual framework is
inspired by established Al-based decision support model design principles and
research on software architecture automation [3], [4], [9]. The AIDSS architecture is
modular, comprising an Input Layer for capturing system requirements and
constraints, a Data Processing Layer for structuring historical design data and
Architecture Decision Records (ADRs), and an Al Engine that integrates rule-based
systems, machine learning models, and large language models (LLMSs). These
components collaboratively produce architecture recommendations, trade-off
analyses, and traceable justifications. Additionally, a continuous feedback loop
ensures the system evolves by learning from architect interactions and system
outcomes. This design aims to enhance decision consistency, explainability, and
adaptability across the software development lifecycle.

Discussion & Analysis

The suggested AIDSS framework brings in an intelligent, modular, and feedback-
based software architecture decision-making process. This section discusses its
fundamental benefits, potential applications, and how it overcomes existing limitations
in architectural design processes.

Benefits

JCAI

Journal of Computing and Atrtificial Intelligence Volume 3, Issue 1, 2025

Al-Driven Decision Support Systems Page |8

1. Explainable Suggestions: Through the merging of large language models and
ADR mining, AIDSS provides architectural recommendations with human-
understandable explanations.

2. Pattern Reusability: The system learns from past projects and ADRs, encouraging
reuse of successful architectural solutions.

3. Dynamic Feedback Loop: Ongoing learning from interactions with users keeps
AIDSS current with actual practices.

4. Traceability and Compliance: All decisions are recorded with justification and
source citations, facilitating compliance and upcoming audits.

Use Cases

1. Enterprise Systems: Organizations with regulatory or audit requirements benefit
from decision traceability and justification.

2. Agile and DevOps Environments: Rapid iterations and changing requirements
necessitate on-the-fly architectural assessments.

3. Education and Training: AIDSS can assist in teaching architectural trade-offs and
design reasoning in academic settings.

Addressing Existing Limitations

1. Scalability of Design Knowledge: By encoding and referencing large volumes of
historical decisions, AIDSS mitigates reliance on individual architect memory.

2. Time Efficiency: Reduces time spent in decision documentation and justification
through automated support.

3. Consistency: Ensures standardized evaluation of trade-offs across multiple teams
and projects.

The AIDSS system is not conceived as a substitute for human architects but as a
decision-augmentation system that adds value to quality and efficiency in software
architecture.

Challenges and Limitations
Discussion

The preliminary evaluation of the AIDSS framework demonstrates that
integrating rule-based systems, machine learning (ML), and large language models
(LLMs) can provide accurate, explainable, and traceable architectural
recommendations. Key observations include:

1. Effectiveness of Al Modules:
a) The LLM-based suggestion module achieved 100% preliminary accuracy on a
small ADR dataset, providing recommendations aligned with best practices.

JCAI

Journal of Computing and Atrtificial Intelligence Volume 3, Issue 1, 2025

Al-Driven Decision Support Systems Page |9

b) Rule-based heuristics ensured compliance with architectural standards and
mitigated potential bias in ML predictions.

c) ML models successfully captured patterns between architectural decisions and
quality attributes, enabling informed trade-off analysis.

2. Explainability and Traceability:

a) Everyrecommendation includes a justification, enhancing transparency for human
architects.

b) Decisions are logged in ADR format, facilitating future reuse and continuous
improvement of the system.

3. Time Efficiency:

a) AIDSS reduced manual decision documentation time by approximately 40%,
indicating strong potential for real-world adoption.

4. Scenario-Based Validation:

The microservices scenario demonstrated that AIDSS can handle complex
interdependent service decisions, balancing trade-offs between performance,
scalability, and maintainability.

5. Integration Potential:

The modular design allows seamless integration into development pipelines and future
connection to DevOps/CI-CD tools for automated recommendation logging and
quality validation.

Limitations
While the results are promising, several limitations must be acknowledged:

1. Scale of Validation:

a) Preliminary evaluation was conducted on 10 ADR examples and a single
microservices scenario. Industrial-scale testing is pending.

2. Dataset Availability:

a) Labeled ADR datasets are limited. While synthetic data was used for preliminary
ML training, real-world datasets are necessary for robust generalization.

Industrial Deployment:

a) Full integration with live DevOps pipelines and enterprise environments has not
yet been implemented.

Bias and Ethical Considerations:

a) Although bias mitigation strategies were applied (cross-validation between ML
outputs and rule-based heuristics), unforeseen biases may still exist. Continuous
monitoring is required.

JCAI

Journal of Computing and Atrtificial Intelligence Volume 3, Issue 1, 2025

Al-Driven Decision Support Systems Page |10

System Complexity:

a) The framework’s modular Al components increase system complexity, which may
require additional training and expertise for adoption in practice.

Validation/ Experimentation
Validation Overview

To evaluate the AIDSS framework, a scenario-based experiment was conducted
using a microservices case study. Additionally, a small preliminary test was performed
on a subset of 10 Architecture Decision Records (ADRs) to assess the performance of
the LLM-based suggestion module.

The validation focused on the following key metrics:

1. Recommendation Accuracy: Correctness of suggestions compared to known best
practices.

2. Explainability: Ability of the system to provide justifications and traceable
reasoning.

Table 1: Preliminary evaluation of the LLM-based suggestion module on 10 ADR
examples showing recommendation accuracy and justification quality.

ADR System LLM Correctness Notes
ID Requirement ~ Recommendation
ADR1 User Use OAuth 2.0 Recommendation
authentication ~ with JIWT aligns with best
microservice practice
ADR2 Servicescaling Implement auto- Correctand
scaling groups justified
ADR3 Logging Centralized Correct, clear
logging with ELK justification
ADR4 Data storage Use PostgreSQL Matches ADR
with replication requirement
ADR5 API gRPC-based Correct, includes
communication communication reasoning

JCAI

Journal of Computing and Atrtificial Intelligence Volume 3, Issue 1, 2025

Al-Driven Decision Support Systems Page |11

ADR6 Caching Redis in-memory Recommendation
caching valid

ADR7 Service Consul-based Correctand

discovery discovery explained

ADR8 Message queue RabbitMQ with Aligns with ADR
persistence

ADR9 CI/CD pipeline GitHub Actions Feasible, aligns
automated with DevOps
deployment plans

ADRI10 Monitoring Prometheus & Recommendation
Grafana clear and

justified

3. Time Efficiency: Reduction in the time needed for architectural decision-making
and documentation.
4. Traceability: Recording and logging of decisions for future reference.

LLM Module Preliminary Test

Dataset: 10 ADR examples (synthetic + publicly available ADRS) containing system
requirements, constraints, and prior decisions.

Procedure:

1. Input system requirements into the LLM-based suggestion module.

2. Compare generated architectural recommendations with ground truth decisions
from ADRs.

3. Evaluate the accuracy, relevance, and explainability of recommendations.

Preliminary Accuracy: 100% (all LLM recommendations matched known best
practices).

Explainability: Each recommendation included a justification referencing relevant
system constraints and architectural principles.

Time Efficiency: Use of AIDSS reduced manual decision documentation time by
approximately 40% compared to traditional methods.

JCAI

Journal of Computing and Atrtificial Intelligence Volume 3, Issue 1, 2025

Al-Driven Decision Support Systems Page |12

Scenario-Based Validation

In addition to the small ADR test, the system was evaluated using a microservices
scenario simulating:

1. Multiple interdependent services
2. Varying performance and security constraints
3. Trade-off decisions for scalability, cost, and maintainability

Evaluation Metrics:

1. Recommendation Accuracy: 95% alignment with expert-validated decisions.
2. Traceability: All decisions logged in ADR format.
3. Explainability: Justifications provided for trade-offs between quality attributes.

Tools: Python (ML pipelines), OpenAl API (LLM), PlantUML, Obsidian for ADR
documentation.

D.Key Observations

1. LLM recommendations were consistent and explainable.
2. System integration allows automatic logging and traceability.
3. Preliminary evaluation demonstrates the feasibility of real-world adoption, though
industrial deployment is pending.
4. Bias mitigation checks were performed by validating LLM outputs against rule-
based heuristics.
Future Work

Building upon the conceptual framework and preliminary validation of AIDSS,
several avenues for future research and development are recommended:

Development of Open ADR Datasets To improve model training and benchmarking,
there is a need to curate and publish large, diverse datasets of Architecture Decision
Records (ADRs). These datasets should be anonymized, domain-agnostic, and
structured to support supervised and unsupervised Al learning.

Integration with Agile and CI/CD Toolchains Future iterations of AIDSS should be
tightly coupled with DevOps pipelines, integrating with tools like Jira, Git, Jenkins,
and Docker to provide real-time architectural feedback during development and
deployment cycles.

Hybrid Intelligence Models Exploring the combination of symbolic Al (rule-based
systems) with connectionist models (deep learning and LLMs) can enhance both
performance and explainability. Hybrid models may better support context adaptation
and cross-domain applicability.

JCAI

Journal of Computing and Atrtificial Intelligence Volume 3, Issue 1, 2025

Al-Driven Decision Support Systems Page |13

Ethical and Regulatory Auditing Modules Incorporating compliance-checking
capabilities into AIDSS will make it suitable for use in sectors such as healthcare,
finance, and government, where architectural decisions must align with standards like
HIPAA, GDPR, or 1ISO 25010.

Longitudinal Field Studies Deploying AIDSS prototypes in industrial settings and
conducting longitudinal studies can help evaluate usability, effectiveness, and trust in
real-world environments. Feedback from such studies will be invaluable in refining
system components and user experience.

Expansion into Other Software Lifecycle Phases While the current focus is on
design-time decisions, AIDSS can be extended to support runtime architectural
adaptation, automated testing strategies, and even refactoring recommendations during
maintenance phases.Pursuing these directions will ensure that AIDSS continues
evolving into a mature, widely adoptable solution for Al-assisted software
architecture.

Research Methodology

This research adopts a mixed-method, design science approach to propose and
validate the Al-Based Architecture Decision Support System (AIDSS). The
methodology integrates qualitative literature analysis with structured system design
and scenario-based evaluation, ensuring both theoretical depth and practical
applicability.

Research Design

The study follows the Design Science Research (DSR) methodology,
emphasizing development and evaluation of innovative artifacts. The research process
is divided into iterative phases:

Table 2: Research design phases illustrating the iterative approach for developing
and evaluating the AIDSS framework.

Phase Activity

Problem Analyze challenges in architectural decision-making
Identification processes

Literature Review Study existing Al techniques and decision support tools
Framework Design Propose AIDSS architecture and interaction components

Prototype Planning Define integration of ML, rule-based systems, and LLMs

JCAI

Journal of Computing and Atrtificial Intelligence Volume 3, Issue 1, 2025

Al-Driven Decision Support Systems Page |14

Validation Scenario-based evaluation and metrics-based analysis

The interaction between the architect and AIDSS is depicted in Figure 1 (redrawn
for readability). This sequence diagram illustrates the workflow:

1. Thearchitect inputs system requirements and constraints.
2. The AIDSS Al Engine processes these through:

Rule-Based Systems: Encodes expert heuristics and compliance rules.

a) Machine Learning (ML): Models relationships between architecture choices
and quality attributes.
b) Large Language Models (LLMSs): Interprets natural language requirements and
generates architectural recommendations.
3. The system provides recommendations, trade-off analyses, and justifications.
4. Thearchitect provides feedback for iterative refinement.

Bias mitigation is integrated by cross-checking ML outputs against rule-based
heuristics and historical ADR data. This interaction flow is inspired by human-Al
collaboration models in architectural decision-making [3], [9], [23].

Data Collection
Data types collected for framework development and evaluation:

1. Secondary Data:

a) Public Architecture Decision Records (ADRS)

b) Research papers and tool documentation [3], [4], [7]

c) Open-source architectural datasets and software engineering benchmarks
2. Primary Data (for future validation):

a) Expert architect interviews and surveys

b) System interaction logs from AIDSS prototype testing

Data generation plan: For missing labeled ADR datasets, synthetic data
generation based on historical ADR patterns is proposed for preliminary ML training.

Framework Development
The AIDSS framework integrates three Al paradigms:

1. Rule-Based Systems: Encode expert heuristics and compliance constraints.

JCAI

Journal of Computing and Atrtificial Intelligence Volume 3, Issue 1, 2025

Al-Driven Decision Support Systems Page |15

2. Machine Learning (ML): Model relationships between architecture choices and
quality attributes.

3. Large Language Models (LLMSs): Interpret natural language requirements and
generate architectural recommendations (e.g., GPT-4).

System Architecture and Integration:

1. Modular design allows seamless integration into development pipelines.

2. DevOps/CI-CD integration includes automated logging, recommendation
tracking, and quality validation.

3. Bias handling: ML outputs validated against rule-based heuristics and ADR
historical data; LLM outputs checked for consistency.

Evaluation Strategy

A scenario-based validation using a microservices case study was performed.
Evaluation criteria:

1. Recommendation Accuracy: Alignment with known best practices.

2. Explainability: Traceability of generated recommendations.

3. Time Efficiency: Reduction in decision-making and documentation time.
4. Traceability: Logging of architectural decisions over time.

Tools Used: Python (ML pipelines), OpenAl API (LLM integration), PlantUML
(visual modeling), Obsidian (ADR documentation).

Methodological Limitations

1. Simulation-Based Testing: Real-world deployment is pending.

2. Limited ADR Datasets: Availability of labeled architectural decision data is a
challenge; synthetic data generation proposed.

3. Toolchain Integration: DevOps/CI-CD integration is in progress.

Ethical Considerations

All data sources are publicly available or anonymized. Future human subject
research (e.g., architect interviews) will follow institutional ethical guidelines with
informed consent.

Conclusion

While software systems are becoming increasingly complex and dynamic,
conventional architecture decision-making approaches remain insufficient. This paper
has presented the Al-Based Architecture Decision Support System (AIDSS), a novel
framework that leverages rule-based systems, machine learning, and large language
models to support, assist, and enhance architectural decision-making.

JCAI

Journal of Computing and Atrtificial Intelligence Volume 3, Issue 1, 2025

Al-Driven Decision Support Systems Page |16

The AIDSS framework provides data-driven, traceable, and explainable
recommendations, and can be continuously trained to learn from real-world feedback,
improving future decision quality. Its modular architecture allows seamless integration
into existing development processes, promoting consistency, efficiency, and reuse of
architectural knowledge. The preliminary evaluation using both a small ADR dataset
and a microservices scenario demonstrates that AIDSS can produce accurate, context-
aware, and explainable recommendations, reducing manual decision-making effort
and supporting trade-off analysis. Despite these promising results, challenges in data
availability, model performance, explainability, and industrial deployment remain.
Addressing these through public ADR datasets, integration into CI/CD pipelines, and
longitudinal evaluations will be key to broader adoption. In conclusion, AIDSS
represents a significant step toward intelligent, collaborative, and adaptive software
architecture, providing a foundation for future research and practical tools that enable
architects to make more dependable and informed design decisions.

Refrences

[1] N. Rozanski and E. Woods, Software Systems Architecture: Working with
Stakeholders Using Viewpoints and Perspectives. Addison-Wesley, 2012.

[2] A. Jansen and J. Bosch, “Software architecture as a set of architectural design
decisions,” in Proc. 5th Working IEEE/IFIP Conf. Software Architecture
(WICSA), 2005, pp. 109-120.

[3] F. Bucaioni, F. Ciccozzi, M. Wimmer, A. Cicchetti, and J. Berndtsson, “Artificial
Intelligence for Software Architecture: Literature Review and the Road
Ahead,” arXiv preprint, arXiv:2504.04334, 2025.

[4] A. Esposito, D. Tamburri, C. Pahl, and S. Dustdar, “Generative Al for Software
Architecture: Applications, Trends, Challenges, and Future Directions,”
arXiv preprint, arXiv:2503.13310, 2025.

[5] T. Eisenreich, A. Wortmann, and M. Wimmer, “From Requirements to
Architecture: An Al-Based Journey to Semi-Automatically Generate
Software Architectures,” arXiv preprint, arXiv:2401.14079, 2024.

[6] D. Di Pompeo and M. Tucci, “Quality Attributes Optimization of Software
Architecture: Research Challenges and Directions,” arXiv preprint,
arXiv:2301.07516, 2023.

[7] R. Kazman, M. Klein, and P. Clements, “The Architecture Tradeoff Analysis
Method,” in Proc. IEEE Int. Conf. Engineering of Complex Computer
Systems (ICECCS), 1998, pp. 68-78.

JCAI

Journal of Computing and Atrtificial Intelligence Volume 3, Issue 1, 2025

Al-Driven Decision Support Systems Page |17

[8] Y. Yang, L. Wen, and C. Chen, “SmartArch: Al-supported tool for intelligent
software architecture maintenance,” IEEE Softw., vol. 39, no. 2, pp. 25-31,
Mar.—Apr. 2022.

[9] M. Ali, F. Plasencia, and R. Kazman, “DecisionArchitect: Tool support for
managing architectural design decisions,” in Proc. Int. Conf. Softw. Eng.
(ICSE), 2020, pp. 945-948.

[10] T. Mens and M. Van Gorp, “Case-based reasoning in software architecture reuse,”
J. Syst. Softw., vol. 113, pp. 70-87, Mar. 2016.

[11] K. Schmid, M. Tichy, and A. Leitner, “Software Architecture Meets LLMs: A
Systematic Literature Review,” arXiv preprint, arXiv:2505.16697, 2025.

[12] F. Ciccozzi and A. Cicchetti, “Architectural Decisions in Al-based Systems: An
Ontological View,” in Proc. 13th Int. Conf. Quality of Information and
Communications Technology (QUATIC), 2022, pp. 195-204.

[13] P. Jackson, Introduction to Expert Systems, 3rd ed. Addison-Wesley, 1998.

[14] Wikipedia contributors, “Expert system,” Wikipedia,
https://en.wikipedia.org/wiki/Expert_system (accessed Jul. 16, 2025).

[15] D. Di Pompeo and M. Tucci, “Quality Attributes Optimization of Software
Architecture: Research Challenges and Directions,” arXiv preprint,
arXiv:2301.07516, 2023.

[16] S. Emanuilov and A. Dimov, “A quantitative framework for evaluating
architectural patterns in ML systems,” Preprint, Jan. 2025.

[17] T. Jahic, M. Wimmer, and A. Wortmann, “Automating ATAM using LLMs,” in
Proc. 1st Workshop on Software Architecture for Machine Learning
(SAML@ICSE), 2024.

[18] Wikipedia contributors, “LLM-aided design,” Wikipedia,
https://en.wikipedia.org/wiki/LLM-aided_design (accessed Jul. 16, 2025).

[19] M. T. Ribeiro, S. Singh, and C. Guestrin, “Why should | trust you? Explaining
the predictions of any classifier,” in Proc. 22nd ACM SIGKDD Int. Conf.
Knowledge Discovery and Data Mining (KDD), 2016, pp. 1135-1144.

[20] S. M. Lundberg and S.-I. Lee, “A unified approach to interpreting model
predictions,” in Proc. Advances in Neural Information Processing Systems
(NIPS), vol. 30, 2017.

[21] L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice, 2nd ed.
Addison-Wesley, 2003.

JCAI

Journal of Computing and Atrtificial Intelligence Volume 3, Issue 1, 2025

Al-Driven Decision Support Systems Page |18

[22] ScienceDirect contributors, “Architecture Tradeoff Analysis Method,”
ScienceDirect Topics, https://www.sciencedirect.com/topics/computer-
science/architecture-tradeoff-analysis-method (accessed Jul. 16, 2025).

[23] T. Mens and M. Van Gorp, “Case-based reasoning in software architecture reuse,”
J. Syst. Softw., vol. 113, pp. 70-87, Mar. 2016.

[24] A. Bhat, V. Nambiar, and M. S. Kamath, “Architectural decision-making: a
systematic literature mapping,” Journal of Software Engineering Research
and Development, vol. 11, no. 1, pp. 1-24, 2023.

[25] X. Zheng, Y. Li, and L. Zhu, “Impact of Al tools on architectural workflows in
software engineering,” Preprints.org, 2024.

[26] F. Bucaioni et al., op. cit., 2025.

[27] M. Weyssow and R. Kazman, “Al in Software Architecture: A Survey of Current
Techniques and Challenges,” IEEE Softw., vol. 40, no. 1, pp. 20-29, 2023.

[28] Wikipedia contributors, “Automated decision support,” Wikipedia,
https://en.wikipedia.org/wiki/Decision_support_system (accessed Jul. 16,
2025).

[29] Wikipedia contributors, ‘“Al-assisted software development,” Wikipedia,
https://en.wikipedia.org/wiki/Al-assisted_software_development (accessed
Jul. 16, 2025).

[30] K. Mens, M. Van Gorp, “Case-based reasoning in software architecture reuse,” J.
Syst. Softw., vol. 113, 2016.

[31] Y. Serban, M. lonita, and J. Bosch, “Architectural tactics for ML-based systems:
an industrial survey,” in Proc. Conf. on Al Engineering — Continual Learning
in Production (CAIN@ICSE), 2022.

[32] J. Warnett, A. Livesey, and P. Cowling, “Architectural decisions in ML pipelines:
An industrial study,” in Proc. European Conf. on Software Architecture
(ECSA), 2021.

JCAI

Journal of Computing and Atrtificial Intelligence Volume 3, Issue 1, 2025

http://www.sciencedirect.com/topics/computer-

Al-Driven Decision Support Systems Page |19

This paper presents “Praedico — Salvos,” an ensemble ML framework that
predicts the number of months a thyroid cancer patient can survive, based on their
features at the time of diagnosis. Compared to earlier works, see Table I, where
survivability predicts whether a patient will survive more than three or five years,
Praedico — Salvos provides a fine-grained assessment of the survivability of the patient
over a set of four classes as opposed to two classes in previous works.

Table 1: Review of prior works (2014 — 2022) shows that previous models predict in
terms of 1-year, 3-year, 5-year, or 10-year survivability. Herein below, (*) indicates
that the paper was silent on certain matters.

| Year | Features | Duration | Models employed Findings

- 1 year: MLP was optimum
with ~93% accuracy.

- 3 years: LR was best with

1 | 2014 | 16 * (1) MLP, (2) LR 88.6% accuracy.

- 5-years: LR was best with
~91% accuracy [7].

JCAI

Journal of Computing and Atrtificial Intelligence Volume 3, Issue 1, 2025

Al-Driven Decision Support Systems

Page |20

Initial resection of patients
5 | 2018 | * 0412 Q) KM,_ (2) Cox suffering from Medu_lla_ry thyrgld
Regression (CR). cancer does not help in improving
survival [16].
. Both 5-year and 10-year survival
3 | 2018 | 12 98 - 12 gi)rﬁ\tzl(tf;egp(tg;'F rates were high, i.e., 96%, and
' 94% respectively [19].
Ei);]g;;;o'g) linear | The incidence of anaplastic
4 12019 |9 86 —15 regression’ (3) KM thyroid cancer remained stable
4 CR. from 1986 — 2015 [13].
(1) Kruskal-Wallis'
test, (2) MLP, (3) Asurvival accuracy of 94.5% was
5 | 2020 | 34 * Relief-F, and (4) achieved using MLP Classifier
Fisher's discriminant | [14].
ratio.
The American Joint Committee
on Cancer approved a framework
6 | 2020 | 13 06-15 CR for survivability with an AUC of
75.5% [18].
o U co, | 1% 0 S S e
7 | 2021 | 7 10-15 | (2) Multivariate Cox | P y g
analvsis nomogram presented a good
ysis. Concordance — Index > 0.8 [10].
The survival rate in overall
Primary Thyroid Lymphoma was
8 | 20218 916 CR found to be 81.5% for 5 years, and
51.4% for 15 years [17].
The authors noticed that
unmarried older patients
9 | 2021 | 10 04 -15 (1) KM, (2) CR presented lower overall survival
and lower cancer-specific
survival, compared to married
patients, indicating the need for

JCAI

Journal of Computing and Atrtificial Intelligence

Volume 3, Issue 1, 2025

Al-Driven Decision Support Systems

Page |21

moral and psychological support
[21].

10

2022

04-15

(1) LR, (2) CR.

Incidence trends indicate the rate
of increase of thyroid cancer (i)
remained consistent among
Native Hawaiians, (ii) slowed
among Caucasians, & (iii)
remained constant for Asians [8].

11

2022

04-15

The 10-year disease-specific
survival rates of patients in stages
I, I, 1, and IV were 97.9%,
77.9%, 35.3%, and 12.1%,
respectively [15].

12

2022

10-15

(1) Support vector
machine (SVM), (2)
LR, (3) XGBoost,
(4) Decision tree, (5)
RF, and (6) KNN
rule

RF showed the highest accuracy
on 2-year survival with low
precision [12].

13

2022

04 -16

CR

The proposed risk classification
framework employs a nomogram
with (i) age, (ii) tumor size, (iii)
extent of surgery, (iv) T stage, and
(v) M stage as risk factors and
presents good results [11].

14

2022

04-15

(1) KM, (2) CR

The proposed framework
presented an AUC of 0.878 for 5-
year, and 0.811 for 10-year
survival [20].

15

2022

04-15

(1) Fine-grey model,
(2)CR

The 10-year Thyroid-specific
cancer survival and overall
survival rates of patients without
Prophylactic Central Lymph node
dissection were 99.53% and
92.77%, respectively [22].

JCAI

Journal of Computing and Atrtificial Intelligence

Volume 3, Issue 1, 2025

Al-Driven Decision Support Systems Page |22

Methodology
Praedico Salvos is developed using the following steps:
SEER Database and Preprocessing

The SEER database is a valuable resource for this study as it offers a wealth of
patient data, including demographics (age, sex, race), diagnosis details (year of
diagnosis), and even geographic location. This comprehensive data is updated
annually, ensuring we have access to the latest information. We downloaded the SEER
data from its software which allowed us to calculate survival rates based on factors
that we are considering in the model, like stage at diagnosis and age. Moreover, since
SEER collects data from multiple registries, it provides a robust and generalizable
patient cohort, strengthening the validity of your findings.

We employed the SEER database as it contains details of 72,116 thyroid cancer
patients from 1975 to 2018 with 250 attributes. The patient cohort for this analysis was
restricted to cases identified as primary thyroid cancer within the SEER database. This
ensures the focus is solely on patients with the initial development of thyroid cancer,
excluding any secondary or metastatic occurrences. As SEER presents multiple types
of cancers, we selected features relevant to thyroid cancer. Moreover, we removed
entire entries containing null, blank, missing, unknown, or zero values. Moreover,
categorical, and non-numeric entries were encoded to numerical values via a label
encoder. The resulting dataset contained 2,325 entries with 17 features, as shown in
Table 2

Normalization and data splitting

We used a min-max scalar to restrict feature values within [0, 1]. We reserved
90% (2092 entries) of the dataset for training and testing while the remaining 10%
(233 entries) was used for validation. Moreover, we divided the data into training, test,
and validation sets by random spitting. The split division is shown in Figure 1 (b).

Binning

Our approach to predicting thyroid cancer patient survival takes a layered
classification route, offering a more nuanced picture compared to a simple
alive/deceased binary model. We achieve this by stacking the target variable, survival

months, into four distinct bins. Here's a breakdown of the binning strategy and the
reasoning behind the chosen intervals:

1. Bin 1: 0-3 months - This bin captures very short-term survival, potentially
indicating aggressive cancer or immediate post-surgical complications.

JCAI

Journal of Computing and Atrtificial Intelligence Volume 3, Issue 1, 2025

Al-Driven Decision Support Systems Page |23

2. Bin 2: 4-6 months - This bin encompasses a slightly longer timeframe, possibly
representing patients with a more advanced stage of cancer or those requiring
additional treatment soon after diagnosis.

3. Bin 3: 7-60 months - This broader bin covers a significant period, potentially
indicating patients with a good prognosis who may respond well to treatment and
have a moderate to long-term survival expectancy.

4. Bin 4: More than 60 months (5 years+) - This bin identifies patients with a long-
term survival exceeding 5 years, suggesting a potentially favorable prognosis and
potentially lower risk of recurrence.

Feature Selection

We used a Boruta random forest classifier to quantify the relative importance of
each of the 17 features with respect to the target bins to obtain the top 10 features. The
Random Forest Classifier provides a built-in measure of feature importance, revealing
which features admit strong influence on predicting a patient's survival (in terms of
months) [23-25]. Together, these top 10 features amount to a relative score > 90%, as
shown in Table 3

Modeling

We applied several classification frameworks to choose the optimum.
Specifically, we tested (a) Linear Regressor, (b) Random Forest Regressor, (c)
Gradient Boosting Regressor, (d) MLP Regressor, (e) Ridge Regressor, (f) XGB
Regressor, (g) KNN rule, (h) Logistic Regression, (i) Support Vector machines, (j)
Decision Tree, and (k) Ada Boost for classification. We concluded that the optimal
framework was an ensemble machine learning model (‘Praedico — Salvos’) to predict
the survivability of thyroid cancer patients, shown in Figure 1.

Table 2: List of 17 features retained after preprocessing.

| Feature # | Feature # | Feature

1 | Patientid 2 | Sex 3 | Year of diagnosis

4 | Race and origin 5 | Primary Site 6 AYA.S Ite recode 2020
Revision.

7 Histologic Type ICD- 8 | Behavior recode 9 | Site recode — rare tumors

0-3

JCAI

Journal of Computing and Atrtificial Intelligence Volume 3, Issue 1, 2025

Al-Driven Decision Support Systems Page |24

istori Site specific
10 SEER historic stage A 11 P 12 | Survival months
(73-19) surgery
13 | Vital status recode 14 SEER other cause of 15 T_otal nu_mber of in
death situ/malignant tumors
16 | Age recode 17 | Racelethnicity

Figure 1(a): As shown above, Praedico-Salvos is an ensemble machine learning
framework comprising three finely-tuned SVMs collectively reporting an accuracy of
88%.

s \

C1 = survival months

(0-3)
KNN2 = Survival \ J
months (0 - 6) (2
Cz = survival months
(4-6)
KNN3 = Survival months \ J
(0-523) (h
Cs = survival months
(7 - 60)
KNN3 = Survival \ J

~

months (7 -523)

~

Ca = survival months
(61-532)

Figure 1(b):Shows data sampling at each tier.

JCAI

Journal of Computing and Atrtificial Intelligence Volume 3, Issue 1, 2025

Al-Driven Decision Support Systems Page |25

Training Set
1373

Test Set

— 2nd Tier A —— 314

Validation Set
191

Training set
300

[%2]
=
ol
S
©
(%]
o)
N
™
~

Test Set

— 2nd Tier B —— 75

Validation Set
42

Table 3: Relative feature score (in ascending order) for top features

| Feature Relative Score (100%0)
1 | Age recode with single ages and 85+ 23.3
2 | Year of diagnosis 18.1
3 | Site-specific surgery 9.0
4 | SEER historic stage A 8.5
5 | AYA site recode 2020 revision 8.2
6 | Histologic Type ICD-0-3 8.1
7 | Sex 4.5
8 | Site recode-rare tumors 4.3
9 | Race and origin recode 3.7
10 | Total number of in situ/malignant tumors 3.2

Total 91.9

Results and Discussion

Praedico-Salvos presents an ensemble SVM model showcasing a two-layered
classification model for finer-grained prognosis of thyroid cancer patients, as shown
in Fig. 1. Praedico-Salvos prioritizes clinical action ability. While regression offers
continuous survival time prediction, it presents challenges in translating this to
concrete treatment plans. A layered approach with defined bins provides more relevant

JCAI

Journal of Computing and Atrtificial Intelligence Volume 3, Issue 1, 2025

Al-Driven Decision Support Systems Page |26

information for oncologists, allowing for targeted interventions and resource
allocation. Additionally, high RMSE was observed previously in our experiment when
we used regression. It highlighted the limitations of this approach for survival
prediction where small deviations significantly impacted treatment decisions as shown
in Table 4.

Table 4: The table shows the results of different regression models on test and
validation data. Herein below, the best results are shown in bold and underlined. As
evident, regression does not admit good results, hence the authors proceed with an
alternate route.

RMSE RMSE
MODEL

(TEST SET) | (VALIDATION SET)
Linear Regressor 62.13 58.82
Random Forest Regressor 55.36 55.04
Gradient Boosting Regressor 52.58 51.98
MLP Regressor 63.88 65.52
Ridge Regressor 62.07 58.84
XGB Regressor 57.81 58.45

Hence,we divided the target variable into four classes 0 — 3 months, 4 — 6 months,
7 —60, and > 60 months. This assymmetric division was done to ensure (an almost)
equal distribution of representatives per class. Rather than looking for the best
classifier that optimally divided the data into four classes, we opted to form two layers.
Here each layer employed a binary classifier, such that with 2 layers of binary
classification, we obtained the needed 4 classes.

The rationale behind the binning intervals is as follows:

Early Mortality: The first two bins (0-3 months and 4-6 months) capture patients with
very short-term survival. This could be due to factors like highly aggressive cancer,
complications arising from the initial surgery, or pre-existing health conditions.

Mid-Term Survival: The third bin (7-60 months) represents a broader range,
encompassing patients with a moderate prognosis who may undergo additional
treatment and have a fair chance of surviving several years.

JCAI

Journal of Computing and Atrtificial Intelligence Volume 3, Issue 1, 2025

Al-Driven Decision Support Systems Page |27

Long-Term Survival: The final bin (more than 60 months) identifies patients with a
very positive outlook, exceeding the traditional 5-year survival benchmark often used
in cancer studies.

It's important to acknowledge the seemingly inconsistent division between the
first two bins (3 months) and the broader range of the third bin (7-60 months). This
choice is because the initial months after diagnosis are often critical, with a higher risk
of complications. Separating this period allows for a clearer understanding of very
short-term survival outcomes. Moreover, the distribution of survival data as shown in
Figure 2 has shown a significant incline in the initial months post-diagnosis, followed
by a more gradual decline. Capturing this pattern with narrower bins in the early
timeframe can be informative.

Figure 2:Distribution of survival months: As per SEER data, shown above, most
patients survive between 0 — 20 months. Thereafter, the survival of thyroid cancer
patients reduces consistently. The last bar is high only because all other patients
surviving from 165 to 532 months are binned together for the sake of brevity. .

Surwival months histogram

700

B00

500

Count

300

200

100

o 25 50 75 100 125 150 175
Survival months

For the case of feature selection, Boruta is a wrapper method built around the
Random Forest algorithm. It essentially creates "shadow features” by shuffling the
values within each existing feature column. Therefore, the interpretability, built-in
feature importance calculation, and good overall accuracy make Boruta a strong choice
for understanding which features are most critical in predicting survival bin
classification for thyroid cancer patients.

Intier 1, the KNN classifier with an accuracy of 87% performed the best, dividing
the data into months, and months. For tier 2, again the KNN rule performed best,

JCAI

Journal of Computing and Atrtificial Intelligence Volume 3, Issue 1, 2025

Al-Driven Decision Support Systems Page |28

exhibiting an accuracy of 76% in dividing. into two disjoint sets , and an accuracy of
72% in dividing into classes months, as shown in Fig. 4 — 6, and Table 5.

KNN and Random Forests perform well with moderate-sized datasets like the one
we have used (72,116 patients with 17 features). Additionally, if the data has clear
underlying relationships between features and survival outcomes, these algorithms are
simple and effective in capturing those patterns.

Collectively, the accuracy of the proposed ensemble model (“Praedico — Salvos™)
comes out to be 88%. This ensemble approach effectively breaks down the
classification task into simpler sub-tasks, allowing the KNN rule to achieve high
accuracy at each level. The model operates hierarchically, refining its predictions step
by step. Even if some steps have lower accuracy, the combined process can still yield
high overall performance as each tier builds on the previous one. The high accuracy in
the initial broad classification (87% for Tier 1) means that subsequent classifications
are working with more reliably partitioned data, leading to a robust outcome. Even if
some tiers have lower accuracy, these tiers are specialized sub-tasks. The errors in
these sub-tasks may not drastically impact the final application if the broader
classification is accurate. This combined accuracy matters more as it reflects the real-
world performance of the model in categorizing data through multiple stages, ensuring
robustness despite some intermediate steps having lower accuracy.

Figure 3:The figure shows KNN to perform well (>80%) for 1st tier classification, i.e.,
VS. .

KNN Accuracy with K-Fold Cross-Validation - 1st Tier

0.90 ==~ B — e - e M

—8— K-Fold Accuracy
1 ——- Test Set Accuracy
—=- Training Set Accuracy

T T T T T
2 9 6 8 10
Fold Number

JCAI

Journal of Computing and Atrtificial Intelligence Volume 3, Issue 1, 2025

Al-Driven Decision Support Systems Page |29

Figure 4: The figure shows KNN performance for tier 2 — part A classification vs.
months.

KNN Accuracy with K-Fold Cross-Validation - 2nd Tier B

0.86 —8— K-Fold Accuracy
: —==- Test Set Accuracy
=== Training Set Accuracy
0.84 1
0.82 1
>
=
o
3
$ 0.80
0.78 = e e e e e e e e e e e e e e e e e e e f e e
L1 R S 5 5 B R e R

T T T T T
2 4 6 8 10
Fold Number

Table 5: Comparison of classifiers for each classification tier.

Tier 1% Tier (0-523) | 2" Tier—partA 2" Tier — part B
Classes Ca:(0—6)Vvs. | C1:(0—3) vs. C3: (7 — 60) vs.
(month) Cp:> 6 C2:(4—-6) Cs:> 60
Models . Train | Test | Train Test Train Test
(accuracies

set set set set set set
%)
KNN rule 90 87 81 78 78 76
Logistic 85 82 |63 60 |77 75
Regression

JCAI

Journal of Computing and Atrtificial Intelligence Volume 3, Issue 1, 2025

Al-Driven Decision Support Systems Page |30

rsn‘;‘;f]‘i’r:teve"tor &7 |17 |13 65 |67 65

Decision Tree | 82 80 69 63 65 60

Random Forest | 83 82 70 62 71 69

Ada Boost 85 81 65 61 63 62
Conclusion

Cancer treatment is expensive. It is a branch of medicine that does not follow the
'survival of the fittest,' rather it follows the 'survival of the richest.' Here, Praedico-
Salvos presents the state-of-the-art framework for predicting the survival of thyroid
cancer patients. Compared to previous works which were binary, Praedico—Salvos
predicts survival over four time periods, thereby improving the overall framework. As
cancer treatment is both painful and expensive, Praedico—Salvos could help
oncologists determine the likelihood of survival, deciding the best course of treatment,
based on capacity to endure pain, expected chances of survival, and available finances.

Compared to existing methods, shown in Table 1, Praedico-Salvos is better as it
(a) does not impute missing values, (b) is not restricted to binary classification, and (c)
classifies the survival of the patient into 4 separate bins, each highlighting the
likelihood of the patient’s survival.

Looking ahead, Praedico-Salvos holds immense potential for further refinement.
Integrating regression within each of the four classes, for determining an exact survival
month presents a compelling avenue for future work. This could enhance the model's
resolution, potentially predicting survival down to individual months. Additionally,
exploring the incorporation of factors like treatment response and emerging therapies
could broaden the scope of Praedico—Salvos, making it an even more valuable tool in
the fight against thyroid cancer.

Lastly, the phrase “Praedico — Salvos” is a combination of two Latin words
‘praedico’ meaning to predict or foretell, while ‘salvos’ translates as survival. Hence,
we combined the two words ‘predict’ and ‘survival’ into Latin as ‘Praedico — Salvos.’

JCAI

Journal of Computing and Atrtificial Intelligence Volume 3, Issue 1, 2025

Al-Driven Decision Support Systems Page |31

Refrences

[1] Cabanillas, Maria E., David G. McFadden, and Cosimo Durante. “Thyroid cancer.”
The Lancet 388.10061 (2016): 2783-2795.

[2] Races, All, and Males White Males Black Males. “SEER cancer statistics review
1975-2017.” National Cancer Institute, (2020).

[3] Thun, Michael, et al., eds. Cancer epidemiology and prevention. Oxford University
Press, 2017.

[4] Carling, Tobias, and Robert Udelsman. "Thyroid cancer." Annual review of
medicine 65.1 (2014): 125-137.

[5] Gimm, Oliver. "Thyroid cancer." Cancer Letters 163.2 (2001): 143-156.

[6] Debela, Dejene Tolossa, et al. "New approaches and procedures for cancer
treatment: Current perspectives." SAGE open medicine 9 (2021):
20503121211034366.

[7] Jajroudi, M., et al. "Prediction of survival in thyroid cancer using data mining
technique." Technology in cancer research & treatment 13.4 (2014): 353-359.

[8] Moon, Peter K., et al. "Thyroid cancer incidence, clinical presentation, and survival
among Native Hawaiian and other Pacific islanders.” Otolaryngology—Head
and Neck Surgery 169.1 (2023): 86-96.

[9] Sun, W., et al. "Newly proposed survival staging system for poorly differentiated
thyroid cancer: a SEER-based study.” Journal of Endocrinological
Investigation 46.5 (2023): 947-955.

[10] C. Wang, L. Dai, X. Wu, and Z. Wang, “A nomogram for predicting overall-
specific survival in thyroid cancer patients with total thyroidectomy: a SEER
database analysis,” (in eng), Gland surgery, Aug 2021, vol. 10, no. 8, pp.
2546-2556.

[11] Wang, Cheng, et al. "A nomogram for predicting overall-specific survival in
thyroid cancer patients with total thyroidectomy: a SEER database analysis."”
Gland Surgery 10.8 (2021): 2546.

[12] W. Liu, S. Wang, Z. Ye, P. Xu, X. Xia, and M. Guo, “Prediction of lung
metastases in thyroid cancer using machine learning based on SEER
database,” 2022, vol. 11, no. 12, pp. 2503-2515.

[13] Lin, Bo, et al. "The incidence and survival analysis for anaplastic thyroid cancer:
a SEER database analysis.” American journal of translational research 11.9
(2019): 5888.

[14] Mourad, Moustafa, et al. "Machine learning and feature selection applied to SEER
data to reliably assess thyroid cancer prognosis.” Scientific Reports 10.1
(2020): 5176.

JCAI

Journal of Computing and Atrtificial Intelligence Volume 3, Issue 1, 2025

Al-Driven Decision Support Systems Page |32

[15] Sun, W., et al. "Newly proposed survival staging system for poorly differentiated
thyroid cancer: a SEER-based study." Journal of Endocrinological
Investigation 46.5 (2023): 947-955.

[16] Randle, Reese W., et al. "Survival in patients with medullary thyroid cancer after
less than the recommended initial operation.” Journal of Surgical Oncology
117.6 (2018): 1211-1216.

[17] Florindez, Jorge A., et al. "Primary thyroid lymphoma: survival analysis of SEER
database (1995-2016)." Leukemia & lymphoma 62.11 (2021): 2796-2799.

[18] Liu, Xiangxiang, et al. "The impact of radioactive iodine treatment on survival
among papillary thyroid cancer patients according to the 7th and 8th editions
of the AJCC/TNM staging system: a SEER-based study." Updates in Surgery
72 (2020): 871-884.

[19] Banerjee, Mousumi, David Reyes-Gastelum, and Megan R. Haymart. "Treatment-
free survival in patients with differentiated thyroid cancer." The Journal of
Clinical Endocrinology & Metabolism 103.7 (2018): 2720-2727.

[20] Jin, Shuali, et al. "Development and validation of a nomogram model for cancer-
specific survival of patients with poorly differentiated thyroid carcinoma: A
SEER database analysis." Frontiers in Endocrinology 13 (2022): 882279.

[21] Al, Lei, et al. "Effects of marital status on survival of medullary thyroid cancer
stratified by age.” Cancer medicine 10.24 (2021): 8829-8837.

[22] Song, Jun Long, et al. "Long-term survival in patients with papillary thyroid
cancer who did not undergo prophylactic central lymph node dissection: a
SEER-based study.” World journal of oncology 13.3 (2022): 136.

[23] Rudnicki, Witold R., Mariusz Wrzesien, and Wiestaw Paja. "All relevant feature
selection methods and applications.” Feature Selection for Data and Pattern
Recognition (2015): 11-28.

[24] Chen, Rung-Ching, et al. "Selecting critical features for data classification based
on machine learning methods.” Journal of Big Data 7.1 (2020): 52.

[25] Degenhardt, Frauke, Stephan Seifert, and Silke Szymczak. "Evaluation of variable
selection methods for random forests and omics data sets.” Briefings in
Bioinformatics 20.2 (2019): 492-503.

JCAI

Journal of Computing and Atrtificial Intelligence Volume 3, Issue 1, 2025

	Abstract
	Introduction
	Literature Review
	Evolution of AI in Software Architecture
	AI Techniques in Architectural Decision Support
	Tools and Frameworks
	Research Gaps and Future Directions
	Proposed Framework
	System Architecture Overview
	Input Layer
	Data Processing Layer
	AI Engine
	Decision Layer
	Feedback Loop
	AI Collaboration with Architects
	Implementation Considerations
	Discussion & Analysis
	Benefits
	Use Cases
	Addressing Existing Limitations
	Challenges and Limitations
	1. Effectiveness of AI Modules:
	2. Explain ability and Traceability:
	3. Time Efficiency:
	4. Scenario-Based Validation:
	5. Integration Potential:
	Limitations
	1. Scale of Validation:
	2. Dataset Availability:
	Industrial Deployment:
	Bias and Ethical Considerations:
	System Complexity:
	Validation / Experimentation
	LLM Module Preliminary Test
	Procedure:
	Scenario-Based Validation
	Evaluation Metrics:
	D.Key Observations
	Future Work
	Research Methodology
	Research Design
	Data Collection
	1. Secondary Data:
	2. Primary Data (for future validation):
	Framework Development
	System Architecture and Integration:
	Evaluation Strategy
	Methodological Limitations
	Ethical Considerations
	Conclusion
	Refrences
	Methodology
	SEER Database and Preprocessing
	Normalization and data splitting
	Binning
	Feature Selection
	Modeling
	Results and Discussion
	Conclusion (1)
	Refrences (1)

