
AI-Driven Decision Support Systems for Software

Architecture: A Framework for Intelligent Design

Decision- Making (2025)

Shawaiz Arif, Meer Usman Amjad, Muhammad Faisal

Faculty of Computer Science & IT, Superior University Lahore, Pakistan

Correspondence:

Shawaiz Arif: Shawaizarif1@gmail.com

Article Link: https://journals.brainetwork.org/index.php/jcai/article/view/122

DOI: https://doi.org/10.69591/jcai.3.1.1

Volume 3, Issue 1, 2025

Funding
No

Copyright
The Authors

Licensing

licensed under a Creative Commons
Attribution 4.0 International License.

Citation: S. Arif, M. U. Amjad, and M. Faisal,

“AI-Driven Decision Support Systems for

Software Architecture: A Framework for

Intelligent Design Decision-Making,” Journal of

Computing and Artificial Intelligence, vol. 3, no.
1, pp. 1–32, 2025.

Conflict of Interest: Authors declared no Conflict of
Interest

Acknowledgment: No administrative and technical
support was taken for this research

Article History

Submitted: Mar 01, 2025

Last Revised: Apr 20, 2025
Accepted: May 12, 2025

An official Publication of

Beyond Research Advancement &
Innovation Network, Islamabad, Pakistan

mailto:Shawaizarif1@gmail.com
https://journals.brainetwork.org/index.php/jcai/article/view/122
https://doi.org/10.69591/jcai.3.1.1
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

AI-Driven Decision Support Systems P a g e | 2

Journal of Computing and Artificial Intelligence Volume 3, Issue 1, 2025

AI-Driven Decision Support Systems for Software

Architecture: A Framework for Intelligent Design Decision-

Making (2025)
Shawaiz Arif*1, Meer Usman Amjad 1, Muhammad Faisal1

1 Faculty of Computer Science & IT, Superior University, Lahore, Pakistan

Abstract

Software architecture decision-making is a critical phase in the software development
lifecycle, often constrained by time, complexity, and uncertainty. As software systems

grow in scale and dynamism, architects require intelligent tools that can assist in
evaluating architectural alternatives, predicting quality trade-offs, and automating
design suggestions. This paper explores the integration of Artificial Intelligence (AI)

into the software architecture decision-making process. We review existing AI-driven
architectural tools, classify relevant AI techniques (including expert systems, machine
learning, and large language models), and propose a conceptual framework for an AI-
based Architecture Decision Support System (AIDSS). The proposed system aims to

enhance decision quality by learning from historical design data, recommending
optimal patterns, and ensuring traceability. We demonstrate the potential of the

framework through example use cases and discuss its applicability in real-world

architectural practices. A visual model of the system architecture is presented. This
paper provides theoretical insights and practical directions for implementing AI-
assisted decision-making in software architecture.

Keywords: Software Architecture, Artificial Intelligence, Decision Support System,

Architecture Decision Records (ADR), Large Language Models, Machine Learning,

Design Automation, AI in Software Engineering.

Introduction

In modern software engineering, software architecture significantly influences

system success, scalability, maintainability, and performance. As software systems

grow more complex—particularly with distributed systems, cloud-native

architectures, and AI-integrated applications—the need for timely and rigorous

architectural decision-making becomes critical. Architects must consider multiple

factors such as performance, security, cost, flexibility, and compliance, often under

tight deadlines and with limited information [1].

* Corresponding Author: Shawaizarif1@gmail.com

mailto:Shawaizarif1@gmail.com

AI-Driven Decision Support Systems P a g e | 3

Journal of Computing and Artificial Intelligence Volume 3, Issue 1, 2025

Traditionally, architectural decisions have relied on expert intuition, experience,

and manual evaluation of trade-offs. While these approaches benefit from human

contextual understanding, they are inherently subjective, inconsistent, and difficult to

scale in large, fast-moving environments. Furthermore, decisions are rarely recorded

formally or reused systematically, resulting in repeated mistakes, undocumented trade-

offs, and loss of architectural knowledge over time [2].

Artificial Intelligence (AI) has emerged as a transformative tool in software

engineering, spanning requirements analysis, testing, and maintenance. In architecture,

AI can shift decision-making from a heuristic, human-driven activity to a data-driven,

knowledge-enabled process. Techniques such as machine learning, natural language

processing, and large language models (LLMs) can support pattern recognition,

prediction, trade-off analysis, and architectural style suggestion [3][4].

This study introduces a conceptual Architecture Decision Support System

(AIDSS) that leverages AI to assist architects in the design stage. The system is

designed to:

1. Learn from historical Architecture Decision Records (ADRs) and design histories

2. Suggest architectural styles and patterns based on system context

3. Analyze and predict quality attribute trade-offs

4. Provide explainable recommendations for transparency

5. Ensure traceability of decisions throughout the development cycle

This framework avoids repeating benefits and limitations in other sections and

focuses on the novelty of AI integration in architectural decision support.

Literature Review

The increasing sophistication of software systems and the need for high-quality

architectural decisions have led to the incorporation of Artificial Intelligence (AI) into

software architecture practice. The section overviews the history of AI application in

software architecture, the types of AI techniques utilized, and the upcoming challenges

recognized in recent literature.

Evolution of AI in Software Architecture

The last few years have seen a considerable growth in studies examining the ways

in which AI can support software architects in design, decision-making, and

documentation activities. Bucaioni et al. performed an extensive systematic literature

review of AI application in software architecture between 2019 and 2024, determining

14 different application domains, such as design automation, architecture recovery,

pattern suggestion, and trade-off analysis [3]. Their research also highlighted six main

AI-Driven Decision Support Systems P a g e | 4

Journal of Computing and Artificial Intelligence Volume 3, Issue 1, 2025

challenges: explainability, adaptability, data availability, lifecycle integration,

traceability, and technical debt awareness.

Previous contributions by Jansen and Bosch focused on how to represent

architecture as a sequence of design choices instead of mere static models [2]. This

transition towards decision-based architecture provided the grounding for AI systems

supporting dynamic, context-based decision-making instead of inflexible,

predetermined templates.

AI Techniques in Architectural Decision Support

AI techniques used in software architecture can be generally classified into the

following:

1. Rule-Based Expert Systems: These systems store architectural knowledge as IF–

THEN rules. While restricted in learning and scalability, they are beneficial in thin

areas and legacy choice situations [5].

2. Machine Learning (ML): ML models are capable of forecasting architecture

performance measures or suggesting appropriate patterns from past data.

Supervised learning has been employed to convert architectural configurations

into system quality properties like reliability or latency [6].

3. Natural Language Processing (NLP) and Large Language Models (LLMs): LLMs

like GPT-4 and Codex have shown potential in understanding and generating

architecture decision records (ADRs), documentation, and pattern suggestions. A

recent study by Schmid et al. reported successful use of LLMs for classifying

design decisions and generating architecture views from textual requirements [7].

4. Case-Based Reasoning (CBR): CBR systems retrieve similar past architecture

cases to guide current decisions. This approach supports traceability and

justifiability of design choices [8].

Tools and Frameworks

Several tools have been proposed or implemented to operationalize AI-based

architectural support:

1. SmartArch: A tool that uses ML to support architectural design by analyzing system

logs and recommending changes [9].

2. DecisionArchitect: Captures architectural design decisions and relates them to quality

attributes, helping trace rationale [10].

3. GPT-based Plugins: Experimental integrations with tools like PlantUML, Zotero, and

Obsidian have enabled auto-generation of architecture diagrams and annotations from
prompts.

AI-Driven Decision Support Systems P a g e | 5

Journal of Computing and Artificial Intelligence Volume 3, Issue 1, 2025

4. However, many tools suffer from lack of explainability, limited domain generalization,

and poor integration with software engineering pipelines [3], [4].

Research Gaps and Future Directions

Despite the growing body of research, several open challenges persist:

1. Explainability: ML/LLM-generated suggestions are often “black-box” and lack

justifications.
2. Lifecycle Integration: Most tools focus on early design but ignore downstream

changes and feedback.

3. Dataset Scarcity: High-quality, labeled architectural decision data is limited.

4. Evaluation Frameworks: Benchmarks for comparing AI-driven decision tools are

lacking [4].

Proposed Framework

AI-Based Architecture Decision Support System (AIDSS) To assist software

architects in making accurate, consistent, and explainable decisions, we propose a

modular, feedback-enabled AI-Based Architecture Decision Support System (AIDSS).

The system combines rule-based logic, machine learning, and large language models

to support architectural planning and evaluation across the software development

lifecycle.

System Architecture Overview

The AIDSS architecture (see Fig. 1) consists of five core layers:

Input Layer

1. This layer ingests inputs from the software project, including:

2. Functional and non-functional requirements

3. Design constraints (e.g., performance limits, regulatory compliance)

4. Business goals and priorities

Data Processing Layer

This layer processes and structures diverse data sources to create a knowledge base:

1. Historical Design Data: Past architectural blueprints and documentation.

2. Architecture Decision Records (ADRs): Structured logs of past decisions and their

outcomes.

3. System Logs & Runtime Data: Useful for performance feedback and adaptation.

AI Engine

The core of the framework, the AI Engine integrates three AI approaches:

1. Rule-Based System: Encodes expert knowledge and domain-specific constraints.

AI-Driven Decision Support Systems P a g e | 6

Journal of Computing and Artificial Intelligence Volume 3, Issue 1, 2025

2. Machine Learning Module: Predicts quality attribute outcomes (e.g., latency,

availability) based on architectural configurations.

3. Large Language Model (LLM) Unit: Interprets natural language requirements and

suggests architectural styles or refactoring actions.

Decision Layer

1. The output layer provides actionable guidance to architects:

2. Suggested Architecture Patterns: E.g., Microservices, Event-Driven, Layered
3. Trade-off Analysis Reports: Quantified metrics for performance, scalability, cost,

etc.

4. Justifications & Traceability: Natural language explanations for

recommendations.

Feedback Loop

1. A continuous learning mechanism:

2. Captures architect responses to suggestions

3. Refines AI models over time

4. Ensures adaptability to evolving domains

AI Collaboration with Architects

Instead of substituting architects, AIDSS is a co-pilot enhancing human

decision-making. The system facilitates exploratory design, iterative refinement, and

rational justification, encouraging trust and accountability.

Implementation Considerations

1. LLMs such as GPT-4 or Codex can be deployed using APIs (e.g., OpenAI,

Anthropic)

2. ML Training Data: Must be domain-specific and labeled (e.g., ADR + quality

outcomes)

3. Explainability: Techniques such as LIME or SHAP can improve interpretability

of ML outputs

4. Interaction between an architect and AIDSS for a microservices design.

Figure 1(a): As shown above, Praedico–Salvos is an ensemble machine learning

framework comprising three finely-tuned SVMs collectively reporting an accuracy of

88%.

AI-Driven Decision Support Systems P a g e | 7

Journal of Computing and Artificial Intelligence Volume 3, Issue 1, 2025

Figure 1: Architecture of the AI-Based Architecture Decision Support System (AIDSS),

showing the interaction between architects and the AI engine, including rule-based,

machine learning, and LLM modules.

The top-level architecture of the proposed AI-Based Architecture Decision

Support System (AIDSS) is illustrated in Figure 1. This conceptual framework is

inspired by established AI-based decision support model design principles and

research on software architecture automation [3], [4], [9]. The AIDSS architecture is

modular, comprising an Input Layer for capturing system requirements and

constraints, a Data Processing Layer for structuring historical design data and

Architecture Decision Records (ADRs), and an AI Engine that integrates rule-based

systems, machine learning models, and large language models (LLMs). These

components collaboratively produce architecture recommendations, trade-off

analyses, and traceable justifications. Additionally, a continuous feedback loop

ensures the system evolves by learning from architect interactions and system

outcomes. This design aims to enhance decision consistency, explainability, and

adaptability across the software development lifecycle.

Discussion & Analysis

The suggested AIDSS framework brings in an intelligent, modular, and feedback-

based software architecture decision-making process. This section discusses its

fundamental benefits, potential applications, and how it overcomes existing limitations

in architectural design processes.

Benefits

AI-Driven Decision Support Systems P a g e | 8

Journal of Computing and Artificial Intelligence Volume 3, Issue 1, 2025

1. Explainable Suggestions: Through the merging of large language models and

ADR mining, AIDSS provides architectural recommendations with human-

understandable explanations.

2. Pattern Reusability: The system learns from past projects and ADRs, encouraging

reuse of successful architectural solutions.

3. Dynamic Feedback Loop: Ongoing learning from interactions with users keeps

AIDSS current with actual practices.

4. Traceability and Compliance: All decisions are recorded with justification and

source citations, facilitating compliance and upcoming audits.

Use Cases

1. Enterprise Systems: Organizations with regulatory or audit requirements benefit

from decision traceability and justification.

2. Agile and DevOps Environments: Rapid iterations and changing requirements

necessitate on-the-fly architectural assessments.

3. Education and Training: AIDSS can assist in teaching architectural trade-offs and

design reasoning in academic settings.

Addressing Existing Limitations

1. Scalability of Design Knowledge: By encoding and referencing large volumes of

historical decisions, AIDSS mitigates reliance on individual architect memory.

2. Time Efficiency: Reduces time spent in decision documentation and justification
through automated support.

3. Consistency: Ensures standardized evaluation of trade-offs across multiple teams

and projects.

The AIDSS system is not conceived as a substitute for human architects but as a

decision-augmentation system that adds value to quality and efficiency in software

architecture.

Challenges and Limitations

Discussion

The preliminary evaluation of the AIDSS framework demonstrates that

integrating rule-based systems, machine learning (ML), and large language models

(LLMs) can provide accurate, explainable, and traceable architectural

recommendations. Key observations include:

1. Effectiveness of AI Modules:

a) The LLM-based suggestion module achieved 100% preliminary accuracy on a
small ADR dataset, providing recommendations aligned with best practices.

AI-Driven Decision Support Systems P a g e | 9

Journal of Computing and Artificial Intelligence Volume 3, Issue 1, 2025

b) Rule-based heuristics ensured compliance with architectural standards and

mitigated potential bias in ML predictions.

c) ML models successfully captured patterns between architectural decisions and

quality attributes, enabling informed trade-off analysis.

2. Explain ability and Traceability:
a) Every recommendation includes a justification, enhancing transparency for human

architects.

b) Decisions are logged in ADR format, facilitating future reuse and continuous

improvement of the system.

3. Time Efficiency:
a) AIDSS reduced manual decision documentation time by approximately 40%,

indicating strong potential for real-world adoption.

4. Scenario-Based Validation:

The microservices scenario demonstrated that AIDSS can handle complex

interdependent service decisions, balancing trade-offs between performance,

scalability, and maintainability.

5. Integration Potential:

The modular design allows seamless integration into development pipelines and future

connection to DevOps/CI-CD tools for automated recommendation logging and

quality validation.

Limitations

While the results are promising, several limitations must be acknowledged:

1. Scale of Validation:
a) Preliminary evaluation was conducted on 10 ADR examples and a single

microservices scenario. Industrial-scale testing is pending.

2. Dataset Availability:

a) Labeled ADR datasets are limited. While synthetic data was used for preliminary

ML training, real-world datasets are necessary for robust generalization.

Industrial Deployment:

a) Full integration with live DevOps pipelines and enterprise environments has not

yet been implemented.

Bias and Ethical Considerations:

a) Although bias mitigation strategies were applied (cross-validation between ML

outputs and rule-based heuristics), unforeseen biases may still exist. Continuous

monitoring is required.

AI-Driven Decision Support Systems P a g e | 10

Journal of Computing and Artificial Intelligence Volume 3, Issue 1, 2025

System Complexity:

a) The framework’s modular AI components increase system complexity, which may

require additional training and expertise for adoption in practice.

Validation / Experimentation

Validation Overview

To evaluate the AIDSS framework, a scenario-based experiment was conducted

using a microservices case study. Additionally, a small preliminary test was performed

on a subset of 10 Architecture Decision Records (ADRs) to assess the performance of

the LLM-based suggestion module.

The validation focused on the following key metrics:

1. Recommendation Accuracy: Correctness of suggestions compared to known best

practices.

2. Explainability: Ability of the system to provide justifications and traceable

reasoning.

Table 1: Preliminary evaluation of the LLM-based suggestion module on 10 ADR

examples showing recommendation accuracy and justification quality.

ADR

ID

System

Requirement

LLM

Recommendation

Correctness Notes

ADR1 User

authentication

microservice

Use OAuth 2.0

with JWT

✅ Recommendation

aligns with best

practice

ADR2 Service scaling Implement auto-

scaling groups

✅ Correct and

justified

ADR3 Logging Centralized

logging with ELK

✅ Correct, clear

justification

ADR4 Data storage Use PostgreSQL

with replication

✅ Matches ADR

requirement

ADR5 API

communication

gRPC-based

communication

✅ Correct, includes

reasoning

AI-Driven Decision Support Systems P a g e | 11

Journal of Computing and Artificial Intelligence Volume 3, Issue 1, 2025

ADR6 Caching Redis in-memory

caching

✅ Recommendation

valid

ADR7 Service

discovery

Consul-based

discovery

✅ Correct and

explained

ADR8 Message queue RabbitMQ with

persistence

✅ Aligns with ADR

ADR9 CI/CD pipeline GitHub Actions

automated

deployment

✅ Feasible, aligns

with DevOps

plans

ADR10 Monitoring Prometheus &

Grafana

✅ Recommendation

clear and

justified

3. Time Efficiency: Reduction in the time needed for architectural decision-making

and documentation.

4. Traceability: Recording and logging of decisions for future reference.

LLM Module Preliminary Test

Dataset: 10 ADR examples (synthetic + publicly available ADRs) containing system

requirements, constraints, and prior decisions.

Procedure:

1. Input system requirements into the LLM-based suggestion module.

2. Compare generated architectural recommendations with ground truth decisions

from ADRs.

3. Evaluate the accuracy, relevance, and explainability of recommendations.

Preliminary Accuracy: 100% (all LLM recommendations matched known best

practices).

Explainability: Each recommendation included a justification referencing relevant

system constraints and architectural principles.

Time Efficiency: Use of AIDSS reduced manual decision documentation time by

approximately 40% compared to traditional methods.

AI-Driven Decision Support Systems P a g e | 12

Journal of Computing and Artificial Intelligence Volume 3, Issue 1, 2025

Scenario-Based Validation

In addition to the small ADR test, the system was evaluated using a microservices

scenario simulating:

1. Multiple interdependent services

2. Varying performance and security constraints

3. Trade-off decisions for scalability, cost, and maintainability

Evaluation Metrics:

1. Recommendation Accuracy: 95% alignment with expert-validated decisions.

2. Traceability: All decisions logged in ADR format.

3. Explainability: Justifications provided for trade-offs between quality attributes.

Tools: Python (ML pipelines), OpenAI API (LLM), PlantUML, Obsidian for ADR

documentation.

D.Key Observations

1. LLM recommendations were consistent and explainable.

2. System integration allows automatic logging and traceability.

3. Preliminary evaluation demonstrates the feasibility of real-world adoption, though

industrial deployment is pending.

4. Bias mitigation checks were performed by validating LLM outputs against rule-

based heuristics.

Future Work

Building upon the conceptual framework and preliminary validation of AIDSS,

several avenues for future research and development are recommended:

Development of Open ADR Datasets To improve model training and benchmarking,

there is a need to curate and publish large, diverse datasets of Architecture Decision

Records (ADRs). These datasets should be anonymized, domain-agnostic, and

structured to support supervised and unsupervised AI learning.

Integration with Agile and CI/CD Toolchains Future iterations of AIDSS should be

tightly coupled with DevOps pipelines, integrating with tools like Jira, Git, Jenkins,

and Docker to provide real-time architectural feedback during development and

deployment cycles.

Hybrid Intelligence Models Exploring the combination of symbolic AI (rule-based

systems) with connectionist models (deep learning and LLMs) can enhance both

performance and explainability. Hybrid models may better support context adaptation

and cross-domain applicability.

AI-Driven Decision Support Systems P a g e | 13

Journal of Computing and Artificial Intelligence Volume 3, Issue 1, 2025

Ethical and Regulatory Auditing Modules Incorporating compliance-checking

capabilities into AIDSS will make it suitable for use in sectors such as healthcare,

finance, and government, where architectural decisions must align with standards like

HIPAA, GDPR, or ISO 25010.

Longitudinal Field Studies Deploying AIDSS prototypes in industrial settings and

conducting longitudinal studies can help evaluate usability, effectiveness, and trust in

real-world environments. Feedback from such studies will be invaluable in refining

system components and user experience.

Expansion into Other Software Lifecycle Phases While the current focus is on

design-time decisions, AIDSS can be extended to support runtime architectural

adaptation, automated testing strategies, and even refactoring recommendations during

maintenance phases.Pursuing these directions will ensure that AIDSS continues

evolving into a mature, widely adoptable solution for AI-assisted software

architecture.

Research Methodology

This research adopts a mixed-method, design science approach to propose and

validate the AI-Based Architecture Decision Support System (AIDSS). The

methodology integrates qualitative literature analysis with structured system design

and scenario-based evaluation, ensuring both theoretical depth and practical

applicability.

Research Design

The study follows the Design Science Research (DSR) methodology,

emphasizing development and evaluation of innovative artifacts. The research process

is divided into iterative phases:

Table 2: Research design phases illustrating the iterative approach for developing

and evaluating the AIDSS framework.

Phase Activity

Problem

Identification

Analyze challenges in architectural decision-making

processes

Literature Review Study existing AI techniques and decision support tools

Framework Design Propose AIDSS architecture and interaction components

Prototype Planning Define integration of ML, rule-based systems, and LLMs

AI-Driven Decision Support Systems P a g e | 14

Journal of Computing and Artificial Intelligence Volume 3, Issue 1, 2025

Validation Scenario-based evaluation and metrics-based analysis

The interaction between the architect and AIDSS is depicted in Figure 1 (redrawn

for readability). This sequence diagram illustrates the workflow:

1. The architect inputs system requirements and constraints.

2. The AIDSS AI Engine processes these through:

Rule-Based Systems: Encodes expert heuristics and compliance rules.

a) Machine Learning (ML): Models relationships between architecture choices

and quality attributes.

b) Large Language Models (LLMs): Interprets natural language requirements and
generates architectural recommendations.

3. The system provides recommendations, trade-off analyses, and justifications.

4. The architect provides feedback for iterative refinement.

Bias mitigation is integrated by cross-checking ML outputs against rule-based

heuristics and historical ADR data. This interaction flow is inspired by human-AI

collaboration models in architectural decision-making [3], [9], [23].

Data Collection

Data types collected for framework development and evaluation:

1. Secondary Data:

a) Public Architecture Decision Records (ADRs)

b) Research papers and tool documentation [3], [4], [7]

c) Open-source architectural datasets and software engineering benchmarks

2. Primary Data (for future validation):

a) Expert architect interviews and surveys

b) System interaction logs from AIDSS prototype testing

Data generation plan: For missing labeled ADR datasets, synthetic data

generation based on historical ADR patterns is proposed for preliminary ML training.

Framework Development

The AIDSS framework integrates three AI paradigms:

1. Rule-Based Systems: Encode expert heuristics and compliance constraints.

AI-Driven Decision Support Systems P a g e | 15

Journal of Computing and Artificial Intelligence Volume 3, Issue 1, 2025

2. Machine Learning (ML): Model relationships between architecture choices and

quality attributes.

3. Large Language Models (LLMs): Interpret natural language requirements and

generate architectural recommendations (e.g., GPT-4).

System Architecture and Integration:

1. Modular design allows seamless integration into development pipelines.
2. DevOps/CI-CD integration includes automated logging, recommendation

tracking, and quality validation.

3. Bias handling: ML outputs validated against rule-based heuristics and ADR

historical data; LLM outputs checked for consistency.

Evaluation Strategy

A scenario-based validation using a microservices case study was performed.

Evaluation criteria:

1. Recommendation Accuracy: Alignment with known best practices.

2. Explainability: Traceability of generated recommendations.

3. Time Efficiency: Reduction in decision-making and documentation time.

4. Traceability: Logging of architectural decisions over time.

Tools Used: Python (ML pipelines), OpenAI API (LLM integration), PlantUML

(visual modeling), Obsidian (ADR documentation).

Methodological Limitations

1. Simulation-Based Testing: Real-world deployment is pending.
2. Limited ADR Datasets: Availability of labeled architectural decision data is a

challenge; synthetic data generation proposed.

3. Toolchain Integration: DevOps/CI-CD integration is in progress.

Ethical Considerations

All data sources are publicly available or anonymized. Future human subject

research (e.g., architect interviews) will follow institutional ethical guidelines with

informed consent.

Conclusion

While software systems are becoming increasingly complex and dynamic,

conventional architecture decision-making approaches remain insufficient. This paper

has presented the AI-Based Architecture Decision Support System (AIDSS), a novel

framework that leverages rule-based systems, machine learning, and large language

models to support, assist, and enhance architectural decision-making.

AI-Driven Decision Support Systems P a g e | 16

Journal of Computing and Artificial Intelligence Volume 3, Issue 1, 2025

The AIDSS framework provides data-driven, traceable, and explainable

recommendations, and can be continuously trained to learn from real-world feedback,

improving future decision quality. Its modular architecture allows seamless integration

into existing development processes, promoting consistency, efficiency, and reuse of

architectural knowledge. The preliminary evaluation using both a small ADR dataset

and a microservices scenario demonstrates that AIDSS can produce accurate, context-

aware, and explainable recommendations, reducing manual decision-making effort

and supporting trade-off analysis. Despite these promising results, challenges in data

availability, model performance, explainability, and industrial deployment remain.

Addressing these through public ADR datasets, integration into CI/CD pipelines, and

longitudinal evaluations will be key to broader adoption. In conclusion, AIDSS

represents a significant step toward intelligent, collaborative, and adaptive software

architecture, providing a foundation for future research and practical tools that enable

architects to make more dependable and informed design decisions.

Refrences

[1] N. Rozanski and E. Woods, Software Systems Architecture: Working with

Stakeholders Using Viewpoints and Perspectives. Addison-Wesley, 2012.

[2] A. Jansen and J. Bosch, “Software architecture as a set of architectural design

decisions,” in Proc. 5th Working IEEE/IFIP Conf. Software Architecture

(WICSA), 2005, pp. 109–120.

[3] F. Bucaioni, F. Ciccozzi, M. Wimmer, A. Cicchetti, and J. Berndtsson, “Artificial

Intelligence for Software Architecture: Literature Review and the Road

Ahead,” arXiv preprint, arXiv:2504.04334, 2025.

[4] A. Esposito, D. Tamburri, C. Pahl, and S. Dustdar, “Generative AI for Software

Architecture: Applications, Trends, Challenges, and Future Directions,”

arXiv preprint, arXiv:2503.13310, 2025.

[5] T. Eisenreich, A. Wortmann, and M. Wimmer, “From Requirements to

Architecture: An AI-Based Journey to Semi-Automatically Generate

Software Architectures,” arXiv preprint, arXiv:2401.14079, 2024.

[6] D. Di Pompeo and M. Tucci, “Quality Attributes Optimization of Software

Architecture: Research Challenges and Directions,” arXiv preprint,

arXiv:2301.07516, 2023.

[7] R. Kazman, M. Klein, and P. Clements, “The Architecture Tradeoff Analysis

Method,” in Proc. IEEE Int. Conf. Engineering of Complex Computer

Systems (ICECCS), 1998, pp. 68-78.

AI-Driven Decision Support Systems P a g e | 17

Journal of Computing and Artificial Intelligence Volume 3, Issue 1, 2025

[8] Y. Yang, L. Wen, and C. Chen, “SmartArch: AI-supported tool for intelligent

software architecture maintenance,” IEEE Softw., vol. 39, no. 2, pp. 25–31,

Mar.–Apr. 2022.

[9] M. Ali, F. Plasencia, and R. Kazman, “DecisionArchitect: Tool support for

managing architectural design decisions,” in Proc. Int. Conf. Softw. Eng.

(ICSE), 2020, pp. 945–948.

[10] T. Mens and M. Van Gorp, “Case-based reasoning in software architecture reuse,”

J. Syst. Softw., vol. 113, pp. 70–87, Mar. 2016.

[11] K. Schmid, M. Tichy, and A. Leitner, “Software Architecture Meets LLMs: A

Systematic Literature Review,” arXiv preprint, arXiv:2505.16697, 2025.

[12] F. Ciccozzi and A. Cicchetti, “Architectural Decisions in AI-based Systems: An

Ontological View,” in Proc. 13th Int. Conf. Quality of Information and

Communications Technology (QUATIC), 2022, pp. 195–204.

[13] P. Jackson, Introduction to Expert Systems, 3rd ed. Addison-Wesley, 1998.

[14] Wikipedia contributors, “Expert system,” Wikipedia,

https://en.wikipedia.org/wiki/Expert_system (accessed Jul. 16, 2025).

[15] D. Di Pompeo and M. Tucci, “Quality Attributes Optimization of Software

Architecture: Research Challenges and Directions,” arXiv preprint,

arXiv:2301.07516, 2023.

[16] S. Emanuilov and A. Dimov, “A quantitative framework for evaluating

architectural patterns in ML systems,” Preprint, Jan. 2025.

[17] T. Jahic, M. Wimmer, and A. Wortmann, “Automating ATAM using LLMs,” in

Proc. 1st Workshop on Software Architecture for Machine Learning

(SAML@ICSE), 2024.

[18] Wikipedia contributors, “LLM-aided design,” Wikipedia,

https://en.wikipedia.org/wiki/LLM-aided_design (accessed Jul. 16, 2025).

[19] M. T. Ribeiro, S. Singh, and C. Guestrin, “Why should I trust you? Explaining

the predictions of any classifier,” in Proc. 22nd ACM SIGKDD Int. Conf.

Knowledge Discovery and Data Mining (KDD), 2016, pp. 1135–1144.

[20] S. M. Lundberg and S.-I. Lee, “A unified approach to interpreting model

predictions,” in Proc. Advances in Neural Information Processing Systems

(NIPS), vol. 30, 2017.

[21] L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice, 2nd ed.

Addison-Wesley, 2003.

AI-Driven Decision Support Systems P a g e | 18

Journal of Computing and Artificial Intelligence Volume 3, Issue 1, 2025

[22] ScienceDirect contributors, “Architecture Tradeoff Analysis Method,”

ScienceDirect Topics, https://www.sciencedirect.com/topics/computer-

science/architecture-tradeoff-analysis-method (accessed Jul. 16, 2025).

[23] T. Mens and M. Van Gorp, “Case-based reasoning in software architecture reuse,”

J. Syst. Softw., vol. 113, pp. 70–87, Mar. 2016.

[24] A. Bhat, V. Nambiar, and M. S. Kamath, “Architectural decision-making: a

systematic literature mapping,” Journal of Software Engineering Research

and Development, vol. 11, no. 1, pp. 1–24, 2023.

[25] X. Zheng, Y. Li, and L. Zhu, “Impact of AI tools on architectural workflows in

software engineering,” Preprints.org, 2024.

[26] F. Bucaioni et al., op. cit., 2025.

[27] M. Weyssow and R. Kazman, “AI in Software Architecture: A Survey of Current

Techniques and Challenges,” IEEE Softw., vol. 40, no. 1, pp. 20–29, 2023.

[28] Wikipedia contributors, “Automated decision support,” Wikipedia,

https://en.wikipedia.org/wiki/Decision_support_system (accessed Jul. 16,

2025).

[29] Wikipedia contributors, “AI-assisted software development,” Wikipedia,

https://en.wikipedia.org/wiki/AI-assisted_software_development (accessed

Jul. 16, 2025).

[30] K. Mens, M. Van Gorp, “Case-based reasoning in software architecture reuse,” J.

Syst. Softw., vol. 113, 2016.

[31] Y. Serban, M. Ionita, and J. Bosch, “Architectural tactics for ML-based systems:

an industrial survey,” in Proc. Conf. on AI Engineering – Continual Learning

in Production (CAIN@ICSE), 2022.

[32] J. Warnett, A. Livesey, and P. Cowling, “Architectural decisions in ML pipelines:

An industrial study,” in Proc. European Conf. on Software Architecture

(ECSA), 2021.

http://www.sciencedirect.com/topics/computer-

AI-Driven Decision Support Systems P a g e | 19

Journal of Computing and Artificial Intelligence Volume 3, Issue 1, 2025

This paper presents “Praedico – Salvos,” an ensemble ML framework that

predicts the number of months a thyroid cancer patient can survive, based on their

features at the time of diagnosis. Compared to earlier works, see Table I, where

survivability predicts whether a patient will survive more than three or five years,

Praedico – Salvos provides a fine-grained assessment of the survivability of the patient

over a set of four classes as opposed to two classes in previous works.

Table 1: Review of prior works (2014 – 2022) shows that previous models predict in

terms of 1-year, 3-year, 5-year, or 10-year survivability. Herein below, (*) indicates

that the paper was silent on certain matters.

Year Features Duration Models employed Findings

1

2014

16

*

(1) MLP, (2) LR

- 1 year: MLP was optimum

with ~93% accuracy.

- 3 years: LR was best with

88.6% accuracy.

- 5-years: LR was best with

~91% accuracy [7].

AI-Driven Decision Support Systems P a g e | 20

Journal of Computing and Artificial Intelligence Volume 3, Issue 1, 2025

2

2018

*

04 – 12

(1) KM, (2) Cox

Regression (CR).

Initial resection of patients

suffering from Medullary thyroid

cancer does not help in improving

survival [16].

3

2018

12

98 – 12

(1) CR, (2) Optimal

survival trees, (3) RF

Both 5-year and 10-year survival

rates were high, i.e., 96%, and

94% respectively [19].

4

2019

9

86 – 15

(1) Join-point

regression, (2) linear

regression, (3) KM,

(4) CR.

The incidence of anaplastic

thyroid cancer remained stable

from 1986 – 2015 [13].

5

2020

34

*

(1) Kruskal-Wallis'

test, (2) MLP, (3)

Relief-F, and (4)

Fisher's discriminant

ratio.

A survival accuracy of 94.5% was

achieved using MLP Classifier

[14].

6

2020

13

06 – 15

CR

The American Joint Committee

on Cancer approved a framework

for survivability with an AUC of

75.5% [18].

7

2021

7

10 – 15

(1) Univariate Cox,

(2) Multivariate Cox

analysis.

The 3- and 5-year survival rate

predictive ability using

nomogram presented a good

Concordance – Index > 0.8 [10].

8

2021

8

95 – 16

CR

The survival rate in overall

Primary Thyroid Lymphoma was

found to be 81.5% for 5 years, and

51.4% for 15 years [17].

9

2021

10

04 – 15

(1) KM, (2) CR

The authors noticed that

unmarried older patients

presented lower overall survival

and lower cancer-specific

survival, compared to married

patients, indicating the need for

AI-Driven Decision Support Systems P a g e | 21

Journal of Computing and Artificial Intelligence Volume 3, Issue 1, 2025

 moral and psychological support

[21].

10

2022

*

04 – 15

(1) LR, (2) CR.

Incidence trends indicate the rate

of increase of thyroid cancer (i)

remained consistent among

Native Hawaiians, (ii) slowed

among Caucasians, & (iii)

remained constant for Asians [8].

11

2022

*

04 – 15

*

The 10-year disease-specific

survival rates of patients in stages

I, II, III, and IV were 97.9%,

77.9%, 35.3%, and 12.1%,

respectively [15].

12

2022

9

10 – 15

(1) Support vector

machine (SVM), (2)

LR, (3) XGBoost,

(4) Decision tree, (5)

RF, and (6) KNN

rule

RF showed the highest accuracy

on 2-year survival with low

precision [12].

13

2022

5

04 – 16

CR

The proposed risk classification

framework employs a nomogram

with (i) age, (ii) tumor size, (iii)

extent of surgery, (iv) T stage, and

(v) M stage as risk factors and

presents good results [11].

14

2022

9

04 – 15

(1) KM, (2) CR

The proposed framework

presented an AUC of 0.878 for 5-

year, and 0.811 for 10-year

survival [20].

15

2022

7

04 – 15

(1) Fine-grey model,

(2) CR

The 10-year Thyroid-specific

cancer survival and overall

survival rates of patients without

Prophylactic Central Lymph node

dissection were 99.53% and

92.77%, respectively [22].

AI-Driven Decision Support Systems P a g e | 22

Journal of Computing and Artificial Intelligence Volume 3, Issue 1, 2025

Methodology

Praedico Salvos is developed using the following steps:

SEER Database and Preprocessing

The SEER database is a valuable resource for this study as it offers a wealth of

patient data, including demographics (age, sex, race), diagnosis details (year of

diagnosis), and even geographic location. This comprehensive data is updated

annually, ensuring we have access to the latest information. We downloaded the SEER

data from its software which allowed us to calculate survival rates based on factors

that we are considering in the model, like stage at diagnosis and age. Moreover, since

SEER collects data from multiple registries, it provides a robust and generalizable

patient cohort, strengthening the validity of your findings.

We employed the SEER database as it contains details of 72,116 thyroid cancer

patients from 1975 to 2018 with 250 attributes. The patient cohort for this analysis was

restricted to cases identified as primary thyroid cancer within the SEER database. This

ensures the focus is solely on patients with the initial development of thyroid cancer,

excluding any secondary or metastatic occurrences. As SEER presents multiple types

of cancers, we selected features relevant to thyroid cancer. Moreover, we removed

entire entries containing null, blank, missing, unknown, or zero values. Moreover,

categorical, and non-numeric entries were encoded to numerical values via a label

encoder. The resulting dataset contained 2,325 entries with 17 features, as shown in

Table 2

Normalization and data splitting

We used a min-max scalar to restrict feature values within [0, 1]. We reserved

90% (2092 entries) of the dataset for training and testing while the remaining 10%

(233 entries) was used for validation. Moreover, we divided the data into training, test,

and validation sets by random spitting. The split division is shown in Figure 1 (b).

Binning

Our approach to predicting thyroid cancer patient survival takes a layered

classification route, offering a more nuanced picture compared to a simple

alive/deceased binary model. We achieve this by stacking the target variable, survival

months, into four distinct bins. Here's a breakdown of the binning strategy and the

reasoning behind the chosen intervals:

1. Bin 1: 0-3 months - This bin captures very short-term survival, potentially

indicating aggressive cancer or immediate post-surgical complications.

AI-Driven Decision Support Systems P a g e | 23

Journal of Computing and Artificial Intelligence Volume 3, Issue 1, 2025

2. Bin 2: 4-6 months - This bin encompasses a slightly longer timeframe, possibly

representing patients with a more advanced stage of cancer or those requiring

additional treatment soon after diagnosis.

3. Bin 3: 7-60 months - This broader bin covers a significant period, potentially

indicating patients with a good prognosis who may respond well to treatment and

have a moderate to long-term survival expectancy.

4. Bin 4: More than 60 months (5 years+) - This bin identifies patients with a long-

term survival exceeding 5 years, suggesting a potentially favorable prognosis and

potentially lower risk of recurrence.

Feature Selection

We used a Boruta random forest classifier to quantify the relative importance of

each of the 17 features with respect to the target bins to obtain the top 10 features. The

Random Forest Classifier provides a built-in measure of feature importance, revealing

which features admit strong influence on predicting a patient's survival (in terms of

months) [23-25]. Together, these top 10 features amount to a relative score > 90%, as

shown in Table 3

Modeling

We applied several classification frameworks to choose the optimum.

Specifically, we tested (a) Linear Regressor, (b) Random Forest Regressor, (c)

Gradient Boosting Regressor, (d) MLP Regressor, (e) Ridge Regressor, (f) XGB

Regressor, (g) KNN rule, (h) Logistic Regression, (i) Support Vector machines, (j)

Decision Tree, and (k) Ada Boost for classification. We concluded that the optimal

framework was an ensemble machine learning model (‘Praedico – Salvos’) to predict

the survivability of thyroid cancer patients, shown in Figure 1.

Table 2: List of 17 features retained after preprocessing.

Feature # Feature # Feature

1 Patient id 2 Sex 3 Year of diagnosis

4 Race and origin 5 Primary Site 6
AYA site recode 2020

Revision.

7
Histologic Type ICD-

O-3
8 Behavior recode 9 Site recode – rare tumors

AI-Driven Decision Support Systems P a g e | 24

Journal of Computing and Artificial Intelligence Volume 3, Issue 1, 2025

C1 = survival months
(0 - 3)

KNN2 = Survival
months (0 - 6)

C2 = survival months
(4 - 6)

C3 = survival months
(7 - 60)

KNN3 = Survival
months (7 - 523)

C4 = survival months
(61 - 532)

KNN1 = Survival months

(0 - 523)

10
SEER historic stage A

(73 – 15)
11

Site specific

surgery
12 Survival months

13 Vital status recode 14
SEER other cause of

death
15

Total number of in

situ/malignant tumors

16 Age recode 17 Race/ethnicity

Figure 1(a): As shown above, Praedico–Salvos is an ensemble machine learning

framework comprising three finely-tuned SVMs collectively reporting an accuracy of
88%.

Figure 1(b):Shows data sampling at each tier.

AI-Driven Decision Support Systems P a g e | 25

Journal of Computing and Artificial Intelligence Volume 3, Issue 1, 2025

 Training Set

1373

Is
t

T
ie

r

2
3
2
5
 S

a
m

p
le

s

2nd Tier A

 Test Set

344

 Validation Set

191

 Training set

300

2nd Tier B

 Test Set

75

 Validation Set

42

Table 3: Relative feature score (in ascending order) for top features

Feature Relative Score (100%)

1 Age recode with single ages and 85+ 23.3

2 Year of diagnosis 18.1

3 Site-specific surgery 9.0

4 SEER historic stage A 8.5

5 AYA site recode 2020 revision 8.2

6 Histologic Type ICD-0-3 8.1

7 Sex 4.5

8 Site recode-rare tumors 4.3

9 Race and origin recode 3.7

10 Total number of in situ/malignant tumors 3.2
 Total 91.9

Results and Discussion

Praedico–Salvos presents an ensemble SVM model showcasing a two-layered

classification model for finer-grained prognosis of thyroid cancer patients, as shown

in Fig. 1. Praedico-Salvos prioritizes clinical action ability. While regression offers

continuous survival time prediction, it presents challenges in translating this to

concrete treatment plans. A layered approach with defined bins provides more relevant

AI-Driven Decision Support Systems P a g e | 26

Journal of Computing and Artificial Intelligence Volume 3, Issue 1, 2025

information for oncologists, allowing for targeted interventions and resource

allocation. Additionally, high RMSE was observed previously in our experiment when

we used regression. It highlighted the limitations of this approach for survival

prediction where small deviations significantly impacted treatment decisions as shown

in Table 4.

Table 4: The table shows the results of different regression models on test and
validation data. Herein below, the best results are shown in bold and underlined. As

evident, regression does not admit good results, hence the authors proceed with an
alternate route.

MODEL

RMSE

(TEST SET)

RMSE

(VALIDATION SET)

Linear Regressor 62.13 58.82

Random Forest Regressor 55.36 55.04

Gradient Boosting Regressor 52.58 51.98

MLP Regressor 63.88 65.52

Ridge Regressor 62.07 58.84

XGB Regressor 57.81 58.45

Hence,we divided the target variable into four classes 0 – 3 months, 4 – 6 months,

7 – 60, and > 60 months. This assymmetric division was done to ensure (an almost)

equal distribution of representatives per class. Rather than looking for the best

classifier that optimally divided the data into four classes, we opted to form two layers.

Here each layer employed a binary classifier, such that with 2 layers of binary

classification, we obtained the needed 4 classes.

The rationale behind the binning intervals is as follows:

Early Mortality: The first two bins (0-3 months and 4-6 months) capture patients with

very short-term survival. This could be due to factors like highly aggressive cancer,

complications arising from the initial surgery, or pre-existing health conditions.

Mid-Term Survival: The third bin (7-60 months) represents a broader range,

encompassing patients with a moderate prognosis who may undergo additional

treatment and have a fair chance of surviving several years.

AI-Driven Decision Support Systems P a g e | 27

Journal of Computing and Artificial Intelligence Volume 3, Issue 1, 2025

Long-Term Survival: The final bin (more than 60 months) identifies patients with a

very positive outlook, exceeding the traditional 5-year survival benchmark often used

in cancer studies.

It's important to acknowledge the seemingly inconsistent division between the

first two bins (3 months) and the broader range of the third bin (7-60 months). This

choice is because the initial months after diagnosis are often critical, with a higher risk

of complications. Separating this period allows for a clearer understanding of very

short-term survival outcomes. Moreover, the distribution of survival data as shown in

Figure 2 has shown a significant incline in the initial months post-diagnosis, followed

by a more gradual decline. Capturing this pattern with narrower bins in the early

timeframe can be informative.

Figure 2:Distribution of survival months: As per SEER data, shown above, most

patients survive between 0 – 20 months. Thereafter, the survival of thyroid cancer
patients reduces consistently. The last bar is high only because all other patients
surviving from 165 to 532 months are binned together for the sake of brevity. .

For the case of feature selection, Boruta is a wrapper method built around the

Random Forest algorithm. It essentially creates "shadow features" by shuffling the

values within each existing feature column. Therefore, the interpretability, built-in

feature importance calculation, and good overall accuracy make Boruta a strong choice

for understanding which features are most critical in predicting survival bin

classification for thyroid cancer patients.

In tier 1, the KNN classifier with an accuracy of 87% performed the best, dividing

the data into months, and months. For tier 2, again the KNN rule performed best,

AI-Driven Decision Support Systems P a g e | 28

Journal of Computing and Artificial Intelligence Volume 3, Issue 1, 2025

exhibiting an accuracy of 76% in dividing. into two disjoint sets , and an accuracy of

72% in dividing into classes months, as shown in Fig. 4 – 6, and Table 5.

KNN and Random Forests perform well with moderate-sized datasets like the one

we have used (72,116 patients with 17 features). Additionally, if the data has clear

underlying relationships between features and survival outcomes, these algorithms are

simple and effective in capturing those patterns.

Collectively, the accuracy of the proposed ensemble model (“Praedico – Salvos”)

comes out to be 88%. This ensemble approach effectively breaks down the

classification task into simpler sub-tasks, allowing the KNN rule to achieve high

accuracy at each level. The model operates hierarchically, refining its predictions step

by step. Even if some steps have lower accuracy, the combined process can still yield

high overall performance as each tier builds on the previous one. The high accuracy in

the initial broad classification (87% for Tier 1) means that subsequent classifications

are working with more reliably partitioned data, leading to a robust outcome. Even if

some tiers have lower accuracy, these tiers are specialized sub-tasks. The errors in

these sub-tasks may not drastically impact the final application if the broader

classification is accurate. This combined accuracy matters more as it reflects the real-

world performance of the model in categorizing data through multiple stages, ensuring

robustness despite some intermediate steps having lower accuracy.

Figure 3:The figure shows KNN to perform well (>80%) for 1st tier classification, i.e.,
vs. .

AI-Driven Decision Support Systems P a g e | 29

Journal of Computing and Artificial Intelligence Volume 3, Issue 1, 2025

Figure 4: The figure shows KNN performance for tier 2 – part A classification vs.

months.

Table 5: Comparison of classifiers for each classification tier.

Tier

Classes

(month)

1st Tier (0 – 523)

𝑪𝒂: (𝟎 − 𝟔) vs.

𝑪𝒃: > 𝟔

2nd Tier – part A

𝑪𝟏: (𝟎 − 𝟑) vs.

𝑪𝟐: (𝟒 − 𝟔)

2nd Tier – part B

𝑪𝟑: (𝟕 − 𝟔𝟎) vs.

𝑪𝟒: > 𝟔𝟎

Models

(accuracies

%)

Train

set

Test

set

Train

set

Test

set

Train

set

Test

set

KNN rule 90 87 81 78 78 76

Logistic

Regression
85 82 63 60 77 75

AI-Driven Decision Support Systems P a g e | 30

Journal of Computing and Artificial Intelligence Volume 3, Issue 1, 2025

Support Vector

machine
87 77 73 65 67 65

Decision Tree 82 80 69 63 65 60

Random Forest 83 82 70 62 71 69

Ada Boost 85 81 65 61 63 62

Conclusion

Cancer treatment is expensive. It is a branch of medicine that does not follow the

'survival of the fittest,' rather it follows the 'survival of the richest.' Here, Praedico–

Salvos presents the state-of-the-art framework for predicting the survival of thyroid

cancer patients. Compared to previous works which were binary, Praedico–Salvos

predicts survival over four time periods, thereby improving the overall framework. As

cancer treatment is both painful and expensive, Praedico–Salvos could help

oncologists determine the likelihood of survival, deciding the best course of treatment,

based on capacity to endure pain, expected chances of survival, and available finances.

Compared to existing methods, shown in Table 1, Praedico–Salvos is better as it
(a) does not impute missing values, (b) is not restricted to binary classification, and (c)

classifies the survival of the patient into 4 separate bins, each highlighting the

likelihood of the patient’s survival.

Looking ahead, Praedico-Salvos holds immense potential for further refinement.

Integrating regression within each of the four classes, for determining an exact survival

month presents a compelling avenue for future work. This could enhance the model's

resolution, potentially predicting survival down to individual months. Additionally,

exploring the incorporation of factors like treatment response and emerging therapies

could broaden the scope of Praedico–Salvos, making it an even more valuable tool in

the fight against thyroid cancer.

Lastly, the phrase “Praedico – Salvos” is a combination of two Latin words

‘praedico’ meaning to predict or foretell, while ‘salvos’ translates as survival. Hence,

we combined the two words ‘predict’ and ‘survival’ into Latin as ‘Praedico – Salvos.’

AI-Driven Decision Support Systems P a g e | 31

Journal of Computing and Artificial Intelligence Volume 3, Issue 1, 2025

Refrences

[1] Cabanillas, Maria E., David G. McFadden, and Cosimo Durante. “Thyroid cancer.”

The Lancet 388.10061 (2016): 2783-2795.

[2] Races, All, and Males White Males Black Males. “SEER cancer statistics review

1975-2017.” National Cancer Institute, (2020).

[3] Thun, Michael, et al., eds. Cancer epidemiology and prevention. Oxford University

Press, 2017.

[4] Carling, Tobias, and Robert Udelsman. "Thyroid cancer." Annual review of

medicine 65.1 (2014): 125-137.

[5] Gimm, Oliver. "Thyroid cancer." Cancer Letters 163.2 (2001): 143-156.
[6] Debela, Dejene Tolossa, et al. "New approaches and procedures for cancer

treatment: Current perspectives." SAGE open medicine 9 (2021):

20503121211034366.

[7] Jajroudi, M., et al. "Prediction of survival in thyroid cancer using data mining

technique." Technology in cancer research & treatment 13.4 (2014): 353-359.

[8] Moon, Peter K., et al. "Thyroid cancer incidence, clinical presentation, and survival

among Native Hawaiian and other Pacific islanders." Otolaryngology–Head

and Neck Surgery 169.1 (2023): 86-96.

[9] Sun, W., et al. "Newly proposed survival staging system for poorly differentiated

thyroid cancer: a SEER-based study." Journal of Endocrinological

Investigation 46.5 (2023): 947-955.

[10] C. Wang, L. Dai, X. Wu, and Z. Wang, “A nomogram for predicting overall-

specific survival in thyroid cancer patients with total thyroidectomy: a SEER

database analysis,” (in eng), Gland surgery, Aug 2021, vol. 10, no. 8, pp.

2546-2556.

[11] Wang, Cheng, et al. "A nomogram for predicting overall-specific survival in

thyroid cancer patients with total thyroidectomy: a SEER database analysis."

Gland Surgery 10.8 (2021): 2546.

[12] W. Liu, S. Wang, Z. Ye, P. Xu, X. Xia, and M. Guo, “Prediction of lung

metastases in thyroid cancer using machine learning based on SEER

database,” 2022, vol. 11, no. 12, pp. 2503-2515.

[13] Lin, Bo, et al. "The incidence and survival analysis for anaplastic thyroid cancer:

a SEER database analysis." American journal of translational research 11.9

(2019): 5888.

[14] Mourad, Moustafa, et al. "Machine learning and feature selection applied to SEER

data to reliably assess thyroid cancer prognosis." Scientific Reports 10.1

(2020): 5176.

AI-Driven Decision Support Systems P a g e | 32

Journal of Computing and Artificial Intelligence Volume 3, Issue 1, 2025

[15] Sun, W., et al. "Newly proposed survival staging system for poorly differentiated

thyroid cancer: a SEER-based study." Journal of Endocrinological

Investigation 46.5 (2023): 947-955.

[16] Randle, Reese W., et al. "Survival in patients with medullary thyroid cancer after

less than the recommended initial operation." Journal of Surgical Oncology

117.6 (2018): 1211-1216.
[17] Florindez, Jorge A., et al. "Primary thyroid lymphoma: survival analysis of SEER

database (1995–2016)." Leukemia & lymphoma 62.11 (2021): 2796-2799.

[18] Liu, Xiangxiang, et al. "The impact of radioactive iodine treatment on survival

among papillary thyroid cancer patients according to the 7th and 8th editions

of the AJCC/TNM staging system: a SEER-based study." Updates in Surgery

72 (2020): 871-884.

[19] Banerjee, Mousumi, David Reyes-Gastelum, and Megan R. Haymart. "Treatment-

free survival in patients with differentiated thyroid cancer." The Journal of

Clinical Endocrinology & Metabolism 103.7 (2018): 2720-2727.

[20] Jin, Shuai, et al. "Development and validation of a nomogram model for cancer-

specific survival of patients with poorly differentiated thyroid carcinoma: A

SEER database analysis." Frontiers in Endocrinology 13 (2022): 882279.

[21] Ai, Lei, et al. "Effects of marital status on survival of medullary thyroid cancer

stratified by age." Cancer medicine 10.24 (2021): 8829-8837.

[22] Song, Jun Long, et al. "Long-term survival in patients with papillary thyroid

cancer who did not undergo prophylactic central lymph node dissection: a

SEER-based study." World journal of oncology 13.3 (2022): 136.

[23] Rudnicki, Witold R., Mariusz Wrzesień, and Wiesław Paja. "All relevant feature

selection methods and applications." Feature Selection for Data and Pattern

Recognition (2015): 11-28.

[24] Chen, Rung-Ching, et al. "Selecting critical features for data classification based

on machine learning methods." Journal of Big Data 7.1 (2020): 52.

[25] Degenhardt, Frauke, Stephan Seifert, and Silke Szymczak. "Evaluation of variable

selection methods for random forests and omics data sets." Briefings in

Bioinformatics 20.2 (2019): 492-503.

	Abstract
	Introduction
	Literature Review
	Evolution of AI in Software Architecture
	AI Techniques in Architectural Decision Support
	Tools and Frameworks
	Research Gaps and Future Directions
	Proposed Framework
	System Architecture Overview
	Input Layer
	Data Processing Layer
	AI Engine
	Decision Layer
	Feedback Loop
	AI Collaboration with Architects
	Implementation Considerations
	Discussion & Analysis
	Benefits
	Use Cases
	Addressing Existing Limitations
	Challenges and Limitations
	1. Effectiveness of AI Modules:
	2. Explain ability and Traceability:
	3. Time Efficiency:
	4. Scenario-Based Validation:
	5. Integration Potential:
	Limitations
	1. Scale of Validation:
	2. Dataset Availability:
	Industrial Deployment:
	Bias and Ethical Considerations:
	System Complexity:
	Validation / Experimentation
	LLM Module Preliminary Test
	Procedure:
	Scenario-Based Validation
	Evaluation Metrics:
	D.Key Observations
	Future Work
	Research Methodology
	Research Design
	Data Collection
	1. Secondary Data:
	2. Primary Data (for future validation):
	Framework Development
	System Architecture and Integration:
	Evaluation Strategy
	Methodological Limitations
	Ethical Considerations
	Conclusion
	Refrences
	Methodology
	SEER Database and Preprocessing
	Normalization and data splitting
	Binning
	Feature Selection
	Modeling
	Results and Discussion
	Conclusion (1)
	Refrences (1)

