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AI-Driven Decision Support Systems for Software 

Architecture: A Framework for Intelligent Design Decision- 

Making (2025) 
Shawaiz Arif*1, Meer Usman Amjad 1, Muhammad Faisal1 

1 Faculty of Computer Science & IT, Superior University, Lahore, Pakistan 

Abstract 

Software architecture decision-making is a critical phase in the software development 
lifecycle, often constrained by time, complexity, and uncertainty. As software systems 

grow in scale and dynamism, architects require intelligent tools that can assist in 
evaluating architectural alternatives, predicting quality trade-offs, and automating 
design suggestions. This paper explores the integration of Artificial Intelligence (AI) 

into the software architecture decision-making process. We review existing AI-driven 
architectural tools, classify relevant AI techniques (including expert systems, machine 
learning, and large language models), and propose a conceptual framework for an AI- 
based Architecture Decision Support System (AIDSS). The proposed system aims to 

enhance decision quality by learning from historical design data, recommending 
optimal patterns, and ensuring traceability. We demonstrate the potential of the 

framework through example use cases and discuss its applicability in real-world 

architectural practices. A visual model of the system architecture is presented. This 
paper provides theoretical insights and practical directions for implementing AI- 
assisted decision-making in software architecture. 

Keywords: Software Architecture, Artificial Intelligence, Decision Support System, 

Architecture Decision Records (ADR), Large Language Models, Machine Learning, 

Design Automation, AI in Software Engineering. 

Introduction 

In modern software engineering, software architecture significantly influences 

system success, scalability, maintainability, and performance. As software systems 

grow more complex—particularly with distributed systems, cloud-native 

architectures, and AI-integrated applications—the need for timely and rigorous 

architectural decision-making becomes critical. Architects must consider multiple 

factors such as performance, security, cost, flexibility, and compliance, often under 

tight deadlines and with limited information [1]. 
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Traditionally, architectural decisions have relied on expert intuition, experience, 

and manual evaluation of trade-offs. While these approaches benefit from human 

contextual understanding, they are inherently subjective, inconsistent, and difficult to 

scale in large, fast-moving environments. Furthermore, decisions are rarely recorded 

formally or reused systematically, resulting in repeated mistakes, undocumented trade- 

offs, and loss of architectural knowledge over time [2]. 

Artificial Intelligence (AI) has emerged as a transformative tool in software 

engineering, spanning requirements analysis, testing, and maintenance. In architecture, 

AI can shift decision-making from a heuristic, human-driven activity to a data-driven, 

knowledge-enabled process. Techniques such as machine learning, natural language 

processing, and large language models (LLMs) can support pattern recognition, 

prediction, trade-off analysis, and architectural style suggestion [3][4]. 

This study introduces a conceptual Architecture Decision Support System 

(AIDSS) that leverages AI to assist architects in the design stage. The system is 

designed to: 

1. Learn from historical Architecture Decision Records (ADRs) and design histories 

2. Suggest architectural styles and patterns based on system context 

3. Analyze and predict quality attribute trade-offs 

4. Provide explainable recommendations for transparency 

5. Ensure traceability of decisions throughout the development cycle 

This framework avoids repeating benefits and limitations in other sections and 

focuses on the novelty of AI integration in architectural decision support. 

 

Literature Review 

The increasing sophistication of software systems and the need for high-quality 

architectural decisions have led to the incorporation of Artificial Intelligence (AI) into 

software architecture practice. The section overviews the history of AI application in 

software architecture, the types of AI techniques utilized, and the upcoming challenges 

recognized in recent literature. 

Evolution of AI in Software Architecture 

The last few years have seen a considerable growth in studies examining the ways 

in which AI can support software architects in design, decision-making, and 

documentation activities. Bucaioni et al. performed an extensive systematic literature 

review of AI application in software architecture between 2019 and 2024, determining 

14 different application domains, such as design automation, architecture recovery, 

pattern suggestion, and trade-off analysis [3]. Their research also highlighted six main 
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challenges: explainability, adaptability, data availability, lifecycle integration, 

traceability, and technical debt awareness. 

Previous contributions by Jansen and Bosch focused on how to represent 

architecture as a sequence of design choices instead of mere static models [2]. This 

transition towards decision-based architecture provided the grounding for AI systems 

supporting dynamic, context-based decision-making instead of inflexible, 

predetermined templates. 

AI Techniques in Architectural Decision Support 

AI techniques used in software architecture can be generally classified into the 

following: 

1. Rule-Based Expert Systems: These systems store architectural knowledge as IF– 

THEN rules. While restricted in learning and scalability, they are beneficial in thin 

areas and legacy choice situations [5]. 

2. Machine Learning (ML): ML models are capable of forecasting architecture 

performance measures or suggesting appropriate patterns from past data. 

Supervised learning has been employed to convert architectural configurations 

into system quality properties like reliability or latency [6]. 

3. Natural Language Processing (NLP) and Large Language Models (LLMs): LLMs 

like GPT-4 and Codex have shown potential in understanding and generating 

architecture decision records (ADRs), documentation, and pattern suggestions. A 

recent study by Schmid et al. reported successful use of LLMs for classifying 

design decisions and generating architecture views from textual requirements [7]. 

4. Case-Based Reasoning (CBR): CBR systems retrieve similar past architecture 

cases to guide current decisions. This approach supports traceability and 

justifiability of design choices [8]. 

Tools and Frameworks 

Several tools have been proposed or implemented to operationalize AI-based 

architectural support: 

1. SmartArch: A tool that uses ML to support architectural design by analyzing system 

logs and recommending changes [9]. 

2. DecisionArchitect: Captures architectural design decisions and relates them to quality 

attributes, helping trace rationale [10]. 

3. GPT-based Plugins: Experimental integrations with tools like PlantUML, Zotero, and 

Obsidian have enabled auto-generation of architecture diagrams and annotations from 
prompts. 
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4. However, many tools suffer from lack of explainability, limited domain generalization, 

and poor integration with software engineering pipelines [3], [4]. 

Research Gaps and Future Directions 

Despite the growing body of research, several open challenges persist: 

1. Explainability: ML/LLM-generated suggestions are often “black-box” and lack 

justifications. 
2. Lifecycle Integration: Most tools focus on early design but ignore downstream 

changes and feedback. 

3. Dataset Scarcity: High-quality, labeled architectural decision data is limited. 

4. Evaluation Frameworks: Benchmarks for comparing AI-driven decision tools are 

lacking [4]. 

Proposed Framework 

AI-Based Architecture Decision Support System (AIDSS) To assist software 

architects in making accurate, consistent, and explainable decisions, we propose a 

modular, feedback-enabled AI-Based Architecture Decision Support System (AIDSS). 

The system combines rule-based logic, machine learning, and large language models 

to support architectural planning and evaluation across the software development 

lifecycle. 

System Architecture Overview 

The AIDSS architecture (see Fig. 1) consists of five core layers: 

Input Layer 

1. This layer ingests inputs from the software project, including: 

2. Functional and non-functional requirements 

3. Design constraints (e.g., performance limits, regulatory compliance) 

4. Business goals and priorities 

Data Processing Layer 

This layer processes and structures diverse data sources to create a knowledge base: 

1. Historical Design Data: Past architectural blueprints and documentation. 

2. Architecture Decision Records (ADRs): Structured logs of past decisions and their 

outcomes. 

3. System Logs & Runtime Data: Useful for performance feedback and adaptation. 

AI Engine 

The core of the framework, the AI Engine integrates three AI approaches: 

1. Rule-Based System: Encodes expert knowledge and domain-specific constraints. 
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2. Machine Learning Module: Predicts quality attribute outcomes (e.g., latency, 

availability) based on architectural configurations. 

3. Large Language Model (LLM) Unit: Interprets natural language requirements and 

suggests architectural styles or refactoring actions. 

Decision Layer 

1. The output layer provides actionable guidance to architects: 

2. Suggested Architecture Patterns: E.g., Microservices, Event-Driven, Layered 
3. Trade-off Analysis Reports: Quantified metrics for performance, scalability, cost, 

etc. 

4. Justifications & Traceability: Natural language explanations for 

recommendations. 

Feedback Loop 

1. A continuous learning mechanism: 

2. Captures architect responses to suggestions 

3. Refines AI models over time 

4. Ensures adaptability to evolving domains 

AI Collaboration with Architects 

Instead of substituting architects, AIDSS is a co-pilot enhancing human 

decision-making. The system facilitates exploratory design, iterative refinement, and 

rational justification, encouraging trust and accountability. 

Implementation Considerations 

1. LLMs such as GPT-4 or Codex can be deployed using APIs (e.g., OpenAI, 

Anthropic) 

2. ML Training Data: Must be domain-specific and labeled (e.g., ADR + quality 

outcomes) 

3. Explainability: Techniques such as LIME or SHAP can improve interpretability 

of ML outputs 

4. Interaction between an architect and AIDSS for a microservices design. 

Figure 1(a): As shown above, Praedico–Salvos is an ensemble machine learning 

framework comprising three finely-tuned SVMs collectively reporting an accuracy of 

88%. 
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Figure 1: Architecture of the AI-Based Architecture Decision Support System (AIDSS), 

showing the interaction between architects and the AI engine, including rule-based, 

machine learning, and LLM modules. 

The top-level architecture of the proposed AI-Based Architecture Decision 

Support System (AIDSS) is illustrated in Figure 1. This conceptual framework is 

inspired by established AI-based decision support model design principles and 

research on software architecture automation [3], [4], [9]. The AIDSS architecture is 

modular, comprising an Input Layer for capturing system requirements and 

constraints, a Data Processing Layer for structuring historical design data and 

Architecture Decision Records (ADRs), and an AI Engine that integrates rule-based 

systems, machine learning models, and large language models (LLMs). These 

components collaboratively produce architecture recommendations, trade-off 

analyses, and traceable justifications. Additionally, a continuous feedback loop 

ensures the system evolves by learning from architect interactions and system 

outcomes. This design aims to enhance decision consistency, explainability, and 

adaptability across the software development lifecycle. 

 

Discussion & Analysis 

The suggested AIDSS framework brings in an intelligent, modular, and feedback- 

based software architecture decision-making process. This section discusses its 

fundamental benefits, potential applications, and how it overcomes existing limitations 

in architectural design processes. 

Benefits 
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1. Explainable Suggestions: Through the merging of large language models and 

ADR mining, AIDSS provides architectural recommendations with human- 

understandable explanations. 

2. Pattern Reusability: The system learns from past projects and ADRs, encouraging 

reuse of successful architectural solutions. 

3. Dynamic Feedback Loop: Ongoing learning from interactions with users keeps 

AIDSS current with actual practices. 

4. Traceability and Compliance: All decisions are recorded with justification and 

source citations, facilitating compliance and upcoming audits. 

Use Cases 

1. Enterprise Systems: Organizations with regulatory or audit requirements benefit 

from decision traceability and justification. 

2. Agile and DevOps Environments: Rapid iterations and changing requirements 

necessitate on-the-fly architectural assessments. 

3. Education and Training: AIDSS can assist in teaching architectural trade-offs and 

design reasoning in academic settings. 

Addressing Existing Limitations 

1. Scalability of Design Knowledge: By encoding and referencing large volumes of 

historical decisions, AIDSS mitigates reliance on individual architect memory. 

2. Time Efficiency: Reduces time spent in decision documentation and justification 
through automated support. 

3. Consistency: Ensures standardized evaluation of trade-offs across multiple teams 

and projects. 

The AIDSS system is not conceived as a substitute for human architects but as a 

decision-augmentation system that adds value to quality and efficiency in software 

architecture. 

Challenges and Limitations 

Discussion 

The preliminary evaluation of the AIDSS framework demonstrates that 

integrating rule-based systems, machine learning (ML), and large language models 

(LLMs) can provide accurate, explainable, and traceable architectural 

recommendations. Key observations include: 

1. Effectiveness of AI Modules: 

a) The LLM-based suggestion module achieved 100% preliminary accuracy on a 
small ADR dataset, providing recommendations aligned with best practices. 
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b) Rule-based heuristics ensured compliance with architectural standards and 

mitigated potential bias in ML predictions. 

c) ML models successfully captured patterns between architectural decisions and 

quality attributes, enabling informed trade-off analysis. 

2. Explain ability and Traceability: 
a) Every recommendation includes a justification, enhancing transparency for human 

architects. 

b) Decisions are logged in ADR format, facilitating future reuse and continuous 

improvement of the system. 

3. Time Efficiency: 
a) AIDSS reduced manual decision documentation time by approximately 40%, 

indicating strong potential for real-world adoption. 

 

4. Scenario-Based Validation: 

The microservices scenario demonstrated that AIDSS can handle complex 

interdependent service decisions, balancing trade-offs between performance, 

scalability, and maintainability. 

5. Integration Potential: 

The modular design allows seamless integration into development pipelines and future 

connection to DevOps/CI-CD tools for automated recommendation logging and 

quality validation. 

Limitations 

While the results are promising, several limitations must be acknowledged: 

1. Scale of Validation: 
a) Preliminary evaluation was conducted on 10 ADR examples and a single 

microservices scenario. Industrial-scale testing is pending. 

2. Dataset Availability: 

a) Labeled ADR datasets are limited. While synthetic data was used for preliminary 

ML training, real-world datasets are necessary for robust generalization. 

Industrial Deployment: 

a) Full integration with live DevOps pipelines and enterprise environments has not 

yet been implemented. 

Bias and Ethical Considerations: 

a) Although bias mitigation strategies were applied (cross-validation between ML 

outputs and rule-based heuristics), unforeseen biases may still exist. Continuous 

monitoring is required. 
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System Complexity: 

a) The framework’s modular AI components increase system complexity, which may 

require additional training and expertise for adoption in practice. 

Validation / Experimentation 

Validation Overview 

To evaluate the AIDSS framework, a scenario-based experiment was conducted 

using a microservices case study. Additionally, a small preliminary test was performed 

on a subset of 10 Architecture Decision Records (ADRs) to assess the performance of 

the LLM-based suggestion module. 

The validation focused on the following key metrics: 

1. Recommendation Accuracy: Correctness of suggestions compared to known best 

practices. 

2. Explainability: Ability of the system to provide justifications and traceable 

reasoning. 

Table 1: Preliminary evaluation of the LLM-based suggestion module on 10 ADR 

examples showing recommendation accuracy and justification quality. 

 

ADR 

ID 

System 

Requirement 

LLM 

Recommendation 

Correctness Notes 

ADR1 User 

authentication 

microservice 

Use OAuth 2.0 

with JWT 

✅ Recommendation 

aligns with best 

practice 

ADR2 Service scaling Implement auto- 

scaling groups 

✅ Correct and 

justified 

ADR3 Logging Centralized 

logging with ELK 

✅ Correct, clear 

justification 

ADR4 Data storage Use PostgreSQL 

with replication 

✅ Matches ADR 

requirement 

ADR5 API 

communication 

gRPC-based 

communication 

✅ Correct, includes 

reasoning 
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ADR6 Caching Redis in-memory 

caching 

✅ Recommendation 

valid 

ADR7 Service 

discovery 

Consul-based 

discovery 

✅ Correct and 

explained 

ADR8 Message queue RabbitMQ with 

persistence 

✅ Aligns with ADR 

ADR9 CI/CD pipeline GitHub Actions 

automated 

deployment 

✅ Feasible, aligns 

with DevOps 

plans 

ADR10 Monitoring Prometheus & 

Grafana 

✅ Recommendation 

clear and 

justified 

 

3. Time Efficiency: Reduction in the time needed for architectural decision-making 

and documentation. 

4. Traceability: Recording and logging of decisions for future reference. 

LLM Module Preliminary Test 

Dataset: 10 ADR examples (synthetic + publicly available ADRs) containing system 

requirements, constraints, and prior decisions. 

Procedure: 

1. Input system requirements into the LLM-based suggestion module. 

2. Compare generated architectural recommendations with ground truth decisions 

from ADRs. 

3. Evaluate the accuracy, relevance, and explainability of recommendations. 

Preliminary Accuracy: 100% (all LLM recommendations matched known best 

practices). 

Explainability: Each recommendation included a justification referencing relevant 

system constraints and architectural principles. 

Time Efficiency: Use of AIDSS reduced manual decision documentation time by 

approximately 40% compared to traditional methods. 
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Scenario-Based Validation 

In addition to the small ADR test, the system was evaluated using a microservices 

scenario simulating: 

1. Multiple interdependent services 

2. Varying performance and security constraints 

3. Trade-off decisions for scalability, cost, and maintainability 

Evaluation Metrics: 

1. Recommendation Accuracy: 95% alignment with expert-validated decisions. 

2. Traceability: All decisions logged in ADR format. 

3. Explainability: Justifications provided for trade-offs between quality attributes. 

Tools: Python (ML pipelines), OpenAI API (LLM), PlantUML, Obsidian for ADR 

documentation. 

D.Key Observations 

1. LLM recommendations were consistent and explainable. 

2. System integration allows automatic logging and traceability. 

3. Preliminary evaluation demonstrates the feasibility of real-world adoption, though 

industrial deployment is pending. 

4. Bias mitigation checks were performed by validating LLM outputs against rule- 

based heuristics. 

Future Work 

Building upon the conceptual framework and preliminary validation of AIDSS, 

several avenues for future research and development are recommended: 

Development of Open ADR Datasets To improve model training and benchmarking, 

there is a need to curate and publish large, diverse datasets of Architecture Decision 

Records (ADRs). These datasets should be anonymized, domain-agnostic, and 

structured to support supervised and unsupervised AI learning. 

Integration with Agile and CI/CD Toolchains Future iterations of AIDSS should be 

tightly coupled with DevOps pipelines, integrating with tools like Jira, Git, Jenkins, 

and Docker to provide real-time architectural feedback during development and 

deployment cycles. 

Hybrid Intelligence Models Exploring the combination of symbolic AI (rule-based 

systems) with connectionist models (deep learning and LLMs) can enhance both 

performance and explainability. Hybrid models may better support context adaptation 

and cross-domain applicability. 
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Ethical and Regulatory Auditing Modules Incorporating compliance-checking 

capabilities into AIDSS will make it suitable for use in sectors such as healthcare, 

finance, and government, where architectural decisions must align with standards like 

HIPAA, GDPR, or ISO 25010. 

Longitudinal Field Studies Deploying AIDSS prototypes in industrial settings and 

conducting longitudinal studies can help evaluate usability, effectiveness, and trust in 

real-world environments. Feedback from such studies will be invaluable in refining 

system components and user experience. 

Expansion into Other Software Lifecycle Phases While the current focus is on 

design-time decisions, AIDSS can be extended to support runtime architectural 

adaptation, automated testing strategies, and even refactoring recommendations during 

maintenance phases.Pursuing these directions will ensure that AIDSS continues 

evolving into a mature, widely adoptable solution for AI-assisted software 

architecture. 

Research Methodology 

This research adopts a mixed-method, design science approach to propose and 

validate the AI-Based Architecture Decision Support System (AIDSS). The 

methodology integrates qualitative literature analysis with structured system design 

and scenario-based evaluation, ensuring both theoretical depth and practical 

applicability. 

Research Design 

The study follows the Design Science Research (DSR) methodology, 

emphasizing development and evaluation of innovative artifacts. The research process 

is divided into iterative phases: 

Table 2: Research design phases illustrating the iterative approach for developing 

and evaluating the AIDSS framework. 

Phase Activity 

Problem 

Identification 

Analyze challenges in architectural decision-making 

processes 

Literature Review Study existing AI techniques and decision support tools 

Framework Design Propose AIDSS architecture and interaction components 

Prototype Planning Define integration of ML, rule-based systems, and LLMs 
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Validation Scenario-based evaluation and metrics-based analysis 

 
The interaction between the architect and AIDSS is depicted in Figure 1 (redrawn 

for readability). This sequence diagram illustrates the workflow: 

1. The architect inputs system requirements and constraints. 

2. The AIDSS AI Engine processes these through: 

Rule-Based Systems: Encodes expert heuristics and compliance rules. 

a) Machine Learning (ML): Models relationships between architecture choices 

and quality attributes. 

b) Large Language Models (LLMs): Interprets natural language requirements and 
generates architectural recommendations. 

3. The system provides recommendations, trade-off analyses, and justifications. 

4. The architect provides feedback for iterative refinement. 

Bias mitigation is integrated by cross-checking ML outputs against rule-based 

heuristics and historical ADR data. This interaction flow is inspired by human-AI 

collaboration models in architectural decision-making [3], [9], [23]. 

Data Collection 

Data types collected for framework development and evaluation: 

1. Secondary Data: 

a) Public Architecture Decision Records (ADRs) 

b) Research papers and tool documentation [3], [4], [7] 

c) Open-source architectural datasets and software engineering benchmarks 

2. Primary Data (for future validation): 

a) Expert architect interviews and surveys 

b) System interaction logs from AIDSS prototype testing 

Data generation plan: For missing labeled ADR datasets, synthetic data 

generation based on historical ADR patterns is proposed for preliminary ML training. 

Framework Development 

The AIDSS framework integrates three AI paradigms: 

1. Rule-Based Systems: Encode expert heuristics and compliance constraints. 
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2. Machine Learning (ML): Model relationships between architecture choices and 

quality attributes. 

3. Large Language Models (LLMs): Interpret natural language requirements and 

generate architectural recommendations (e.g., GPT-4). 

System Architecture and Integration: 

1. Modular design allows seamless integration into development pipelines. 
2. DevOps/CI-CD integration includes automated logging, recommendation 

tracking, and quality validation. 

3. Bias handling: ML outputs validated against rule-based heuristics and ADR 

historical data; LLM outputs checked for consistency. 

Evaluation Strategy 

A scenario-based validation using a microservices case study was performed. 

Evaluation criteria: 

1. Recommendation Accuracy: Alignment with known best practices. 

2. Explainability: Traceability of generated recommendations. 

3. Time Efficiency: Reduction in decision-making and documentation time. 

4. Traceability: Logging of architectural decisions over time. 

Tools Used: Python (ML pipelines), OpenAI API (LLM integration), PlantUML 

(visual modeling), Obsidian (ADR documentation). 

Methodological Limitations 

1. Simulation-Based Testing: Real-world deployment is pending. 
2. Limited ADR Datasets: Availability of labeled architectural decision data is a 

challenge; synthetic data generation proposed. 

3. Toolchain Integration: DevOps/CI-CD integration is in progress. 

Ethical Considerations 

All data sources are publicly available or anonymized. Future human subject 

research (e.g., architect interviews) will follow institutional ethical guidelines with 

informed consent. 

Conclusion 

While software systems are becoming increasingly complex and dynamic, 

conventional architecture decision-making approaches remain insufficient. This paper 

has presented the AI-Based Architecture Decision Support System (AIDSS), a novel 

framework that leverages rule-based systems, machine learning, and large language 

models to support, assist, and enhance architectural decision-making. 
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The AIDSS framework provides data-driven, traceable, and explainable 

recommendations, and can be continuously trained to learn from real-world feedback, 

improving future decision quality. Its modular architecture allows seamless integration 

into existing development processes, promoting consistency, efficiency, and reuse of 

architectural knowledge. The preliminary evaluation using both a small ADR dataset 

and a microservices scenario demonstrates that AIDSS can produce accurate, context- 

aware, and explainable recommendations, reducing manual decision-making effort 

and supporting trade-off analysis. Despite these promising results, challenges in data 

availability, model performance, explainability, and industrial deployment remain. 

Addressing these through public ADR datasets, integration into CI/CD pipelines, and 

longitudinal evaluations will be key to broader adoption. In conclusion, AIDSS 

represents a significant step toward intelligent, collaborative, and adaptive software 

architecture, providing a foundation for future research and practical tools that enable 

architects to make more dependable and informed design decisions. 
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This paper presents “Praedico – Salvos,” an ensemble ML framework that 

predicts the number of months a thyroid cancer patient can survive, based on their 

features at the time of diagnosis. Compared to earlier works, see Table I, where 

survivability predicts whether a patient will survive more than three or five years, 

Praedico – Salvos provides a fine-grained assessment of the survivability of the patient 

over a set of four classes as opposed to two classes in previous works. 

Table 1: Review of prior works (2014 – 2022) shows that previous models predict in 

terms of 1-year, 3-year, 5-year, or 10-year survivability. Herein below, (*) indicates 

that the paper was silent on certain matters. 
 

# Year Features Duration Models employed Findings 

 
 

 
1 

 
 

 
2014 

 
 

 
16 

 
 

 
* 

 
 

 
(1) MLP, (2) LR 

- 1 year: MLP was optimum 

with ~93% accuracy. 

 
- 3 years: LR was best with 

88.6% accuracy. 

 

- 5-years: LR was best with 

~91% accuracy [7]. 
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2 

 
2018 

 
* 

 
04 – 12 

 
(1) KM, (2) Cox 

Regression (CR). 

Initial resection of patients 

suffering from Medullary thyroid 

cancer does not help in improving 

survival [16]. 

 
3 

 
2018 

 
12 

 
98 – 12 

(1) CR, (2) Optimal 

survival trees, (3) RF 

Both 5-year and 10-year survival 

rates were high, i.e., 96%, and 

94% respectively [19]. 

 
4 

 
2019 

 
9 

 
86 – 15 

(1) Join-point 

regression, (2) linear 

regression, (3) KM, 

(4) CR. 

The incidence of anaplastic 

thyroid cancer remained stable 

from 1986 – 2015 [13]. 

 

 
5 

 

 
2020 

 

 
34 

 

 
* 

(1) Kruskal-Wallis' 

test, (2) MLP, (3) 

Relief-F, and (4) 

Fisher's discriminant 

ratio. 

 

A survival accuracy of 94.5% was 

achieved using MLP Classifier 

[14]. 

 
6 

 
2020 

 
13 

 
06 – 15 

 
CR 

The American Joint Committee 

on Cancer approved a framework 

for survivability with an AUC of 

75.5% [18]. 

 
7 

 
2021 

 
7 

 
10 – 15 

(1) Univariate Cox, 

(2) Multivariate Cox 

analysis. 

The 3- and 5-year survival rate 

predictive ability using 

nomogram presented a good 

Concordance – Index > 0.8 [10]. 

 
8 

 
2021 

 
8 

 
95 – 16 

 
CR 

The survival rate in overall 

Primary Thyroid Lymphoma was 

found to be 81.5% for 5 years, and 

51.4% for 15 years [17]. 

 

 
9 

 

 
2021 

 

 
10 

 

 
04 – 15 

 

 
(1) KM, (2) CR 

The authors noticed that 

unmarried older patients 

presented lower overall survival 

and lower cancer-specific 

survival, compared to married 

patients, indicating the need for 
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     moral and psychological support 

[21]. 

 

 
10 

 

 
2022 

 

 
* 

 

 
04 – 15 

 

 
(1) LR, (2) CR. 

Incidence trends indicate the rate 

of increase of thyroid cancer (i) 

remained consistent among 

Native Hawaiians, (ii) slowed 

among Caucasians, & (iii) 

remained constant for Asians [8]. 

 

 
11 

 

 
2022 

 

 
* 

 

 
04 – 15 

 

 
* 

The 10-year disease-specific 

survival rates of patients in stages 

I, II, III, and IV were 97.9%, 

77.9%,  35.3%,  and  12.1%, 

respectively [15]. 

 

 
12 

 

 
2022 

 

 
9 

 

 
10 – 15 

(1) Support vector 

machine (SVM), (2) 

LR, (3) XGBoost, 

(4) Decision tree, (5) 

RF, and (6) KNN 

rule 

 
RF showed the highest accuracy 

on 2-year survival with low 

precision [12]. 

 

 
13 

 

 
2022 

 

 
5 

 

 
04 – 16 

 

 
CR 

The proposed risk classification 

framework employs a nomogram 

with (i) age, (ii) tumor size, (iii) 

extent of surgery, (iv) T stage, and 

(v) M stage as risk factors and 

presents good results [11]. 

 
14 

 
2022 

 
9 

 
04 – 15 

 
(1) KM, (2) CR 

The proposed framework 

presented an AUC of 0.878 for 5- 

year, and 0.811 for 10-year 

survival [20]. 

 

 
15 

 

 
2022 

 

 
7 

 

 
04 – 15 

 

 
(1) Fine-grey model, 

(2) CR 

The 10-year Thyroid-specific 

cancer survival and overall 

survival rates of patients without 

Prophylactic Central Lymph node 

dissection were 99.53% and 

92.77%, respectively [22]. 
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Methodology 

Praedico Salvos is developed using the following steps: 

SEER Database and Preprocessing 

The SEER database is a valuable resource for this study as it offers a wealth of 

patient data, including demographics (age, sex, race), diagnosis details (year of 

diagnosis), and even geographic location. This comprehensive data is updated 

annually, ensuring we have access to the latest information. We downloaded the SEER 

data from its software which allowed us to calculate survival rates based on factors 

that we are considering in the model, like stage at diagnosis and age. Moreover, since 

SEER collects data from multiple registries, it provides a robust and generalizable 

patient cohort, strengthening the validity of your findings. 

We employed the SEER database as it contains details of 72,116 thyroid cancer 

patients from 1975 to 2018 with 250 attributes. The patient cohort for this analysis was 

restricted to cases identified as primary thyroid cancer within the SEER database. This 

ensures the focus is solely on patients with the initial development of thyroid cancer, 

excluding any secondary or metastatic occurrences. As SEER presents multiple types 

of cancers, we selected features relevant to thyroid cancer. Moreover, we removed 

entire entries containing null, blank, missing, unknown, or zero values. Moreover, 

categorical, and non-numeric entries were encoded to numerical values via a label 

encoder. The resulting dataset contained 2,325 entries with 17 features, as shown in 

Table 2 

Normalization and data splitting 

We used a min-max scalar to restrict feature values within [0, 1]. We reserved 

90% (2092 entries) of the dataset for training and testing while the remaining 10% 

(233 entries) was used for validation. Moreover, we divided the data into training, test, 

and validation sets by random spitting. The split division is shown in Figure 1 (b). 

Binning 

Our approach to predicting thyroid cancer patient survival takes a layered 

classification route, offering a more nuanced picture compared to a simple 

alive/deceased binary model. We achieve this by stacking the target variable, survival 

months, into four distinct bins. Here's a breakdown of the binning strategy and the 

reasoning behind the chosen intervals: 

1. Bin 1: 0-3 months - This bin captures very short-term survival, potentially 

indicating aggressive cancer or immediate post-surgical complications. 
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2. Bin 2: 4-6 months - This bin encompasses a slightly longer timeframe, possibly 

representing patients with a more advanced stage of cancer or those requiring 

additional treatment soon after diagnosis. 

3. Bin 3: 7-60 months - This broader bin covers a significant period, potentially 

indicating patients with a good prognosis who may respond well to treatment and 

have a moderate to long-term survival expectancy. 

4. Bin 4: More than 60 months (5 years+) - This bin identifies patients with a long- 

term survival exceeding 5 years, suggesting a potentially favorable prognosis and 

potentially lower risk of recurrence. 

Feature Selection 

We used a Boruta random forest classifier to quantify the relative importance of 

each of the 17 features with respect to the target bins to obtain the top 10 features. The 

Random Forest Classifier provides a built-in measure of feature importance, revealing 

which features admit strong influence on predicting a patient's survival (in terms of 

months) [23-25]. Together, these top 10 features amount to a relative score > 90%, as 

shown in Table 3 

Modeling 

We applied several classification frameworks to choose the optimum. 

Specifically, we tested (a) Linear Regressor, (b) Random Forest Regressor, (c) 

Gradient Boosting Regressor, (d) MLP Regressor, (e) Ridge Regressor, (f) XGB 

Regressor, (g) KNN rule, (h) Logistic Regression, (i) Support Vector machines, (j) 

Decision Tree, and (k) Ada Boost for classification. We concluded that the optimal 

framework was an ensemble machine learning model (‘Praedico – Salvos’) to predict 

the survivability of thyroid cancer patients, shown in Figure 1. 

Table 2: List of 17 features retained after preprocessing. 
 

# Feature # Feature # Feature 

1 Patient id 2 Sex 3 Year of diagnosis 

4 Race and origin 5 Primary Site 6 
AYA site recode 2020 

Revision. 

7 
Histologic Type ICD- 

O-3 
8 Behavior recode 9 Site recode – rare tumors 
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C1 = survival months 
(0 - 3) 

KNN2 = Survival 
months (0 - 6) 

C2 = survival months 
(4 - 6) 

C3 = survival months 
(7 - 60) 

KNN3 = Survival 
months (7 - 523) 

C4 = survival months 
(61 - 532) 

KNN1 = Survival months 

(0 - 523) 

 

10 
SEER historic stage A 

(73 – 15) 
11 

Site specific 

surgery 
12 Survival months 

13 Vital status recode 14 
SEER other cause of 

death 
15 

Total number of in 

situ/malignant tumors 

16 Age recode 17 Race/ethnicity   

 
Figure 1(a): As shown above, Praedico–Salvos is an ensemble machine learning 

framework comprising three finely-tuned SVMs collectively reporting an accuracy of 
88%. 

 

 

Figure 1(b):Shows data sampling at each tier. 
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2nd Tier A 

  Test Set 

344     

 
 

 Validation Set 

191  

 
 

 Training set 

300   
 

 
2nd Tier B 

  Test Set 

75    
  

  Validation Set 

42  

 
Table 3: Relative feature score (in ascending order) for top features 

 

# Feature Relative Score (100%) 

1 Age recode with single ages and 85+ 23.3 

2 Year of diagnosis 18.1 

3 Site-specific surgery 9.0 

4 SEER historic stage A 8.5 

5 AYA site recode 2020 revision 8.2 

6 Histologic Type ICD-0-3 8.1 

7 Sex 4.5 

8 Site recode-rare tumors 4.3 

9 Race and origin recode 3.7 

10 Total number of in situ/malignant tumors 3.2 
 Total 91.9 

 

 

Results and Discussion 

Praedico–Salvos presents an ensemble SVM model showcasing a two-layered 

classification model for finer-grained prognosis of thyroid cancer patients, as shown 

in Fig. 1. Praedico-Salvos prioritizes clinical action ability. While regression offers 

continuous survival time prediction, it presents challenges in translating this to 

concrete treatment plans. A layered approach with defined bins provides more relevant 
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information for oncologists, allowing for targeted interventions and resource 

allocation. Additionally, high RMSE was observed previously in our experiment when 

we used regression. It highlighted the limitations of this approach for survival 

prediction where small deviations significantly impacted treatment decisions as shown 

in Table 4. 

Table 4: The table shows the results of different regression models on test and 
validation data. Herein below, the best results are shown in bold and underlined. As 

evident, regression does not admit good results, hence the authors proceed with an 
alternate route. 

 

 

MODEL 

RMSE 

 

(TEST SET) 

RMSE 

 

(VALIDATION SET) 

Linear Regressor 62.13 58.82 

Random Forest Regressor 55.36 55.04 

Gradient Boosting Regressor 52.58 51.98 

MLP Regressor 63.88 65.52 

Ridge Regressor 62.07 58.84 

XGB Regressor 57.81 58.45 

Hence,we divided the target variable into four classes 0 – 3 months, 4 – 6 months, 

7 – 60, and > 60 months. This assymmetric division was done to ensure (an almost) 

equal distribution of representatives per class. Rather than looking for the best 

classifier that optimally divided the data into four classes, we opted to form two layers. 

Here each layer employed a binary classifier, such that with 2 layers of binary 

classification, we obtained the needed 4 classes. 

The rationale behind the binning intervals is as follows: 

Early Mortality: The first two bins (0-3 months and 4-6 months) capture patients with 

very short-term survival. This could be due to factors like highly aggressive cancer, 

complications arising from the initial surgery, or pre-existing health conditions. 

Mid-Term Survival: The third bin (7-60 months) represents a broader range, 

encompassing patients with a moderate prognosis who may undergo additional 

treatment and have a fair chance of surviving several years. 
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Long-Term Survival: The final bin (more than 60 months) identifies patients with a 

very positive outlook, exceeding the traditional 5-year survival benchmark often used 

in cancer studies. 

It's important to acknowledge the seemingly inconsistent division between the 

first two bins (3 months) and the broader range of the third bin (7-60 months). This 

choice is because the initial months after diagnosis are often critical, with a higher risk 

of complications. Separating this period allows for a clearer understanding of very 

short-term survival outcomes. Moreover, the distribution of survival data as shown in 

Figure 2 has shown a significant incline in the initial months post-diagnosis, followed 

by a more gradual decline. Capturing this pattern with narrower bins in the early 

timeframe can be informative. 

Figure 2:Distribution of survival months: As per SEER data, shown above, most 

patients survive between 0 – 20 months. Thereafter, the survival of thyroid cancer 
patients reduces consistently. The last bar is high only because all other patients 
surviving from 165 to 532 months are binned together for the sake of brevity. . 

 

 

 
For the case of feature selection, Boruta is a wrapper method built around the 

Random Forest algorithm. It essentially creates "shadow features" by shuffling the 

values within each existing feature column. Therefore, the interpretability, built-in 

feature importance calculation, and good overall accuracy make Boruta a strong choice 

for understanding which features are most critical in predicting survival bin 

classification for thyroid cancer patients. 

In tier 1, the KNN classifier with an accuracy of 87% performed the best, dividing 

the data into months, and months. For tier 2, again the KNN rule performed best, 
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exhibiting an accuracy of 76% in dividing. into two disjoint sets , and an accuracy of 

72% in dividing into classes months, as shown in Fig. 4 – 6, and Table 5. 

KNN and Random Forests perform well with moderate-sized datasets like the one 

we have used (72,116 patients with 17 features). Additionally, if the data has clear 

underlying relationships between features and survival outcomes, these algorithms are 

simple and effective in capturing those patterns. 

Collectively, the accuracy of the proposed ensemble model (“Praedico – Salvos”) 

comes out to be 88%. This ensemble approach effectively breaks down the 

classification task into simpler sub-tasks, allowing the KNN rule to achieve high 

accuracy at each level. The model operates hierarchically, refining its predictions step 

by step. Even if some steps have lower accuracy, the combined process can still yield 

high overall performance as each tier builds on the previous one. The high accuracy in 

the initial broad classification (87% for Tier 1) means that subsequent classifications 

are working with more reliably partitioned data, leading to a robust outcome. Even if 

some tiers have lower accuracy, these tiers are specialized sub-tasks. The errors in 

these sub-tasks may not drastically impact the final application if the broader 

classification is accurate. This combined accuracy matters more as it reflects the real- 

world performance of the model in categorizing data through multiple stages, ensuring 

robustness despite some intermediate steps having lower accuracy. 

Figure 3:The figure shows KNN to perform well (>80%) for 1st tier classification, i.e., 
vs. . 
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Figure 4: The figure shows KNN performance for tier 2 – part A classification vs. 

months. 

 

Table 5: Comparison of classifiers for each classification tier. 
 

Tier 

Classes 

(month) 

1st Tier (0 – 523) 

𝑪𝒂: (𝟎 − 𝟔) vs. 

𝑪𝒃: > 𝟔 

2nd Tier – part A 

𝑪𝟏: (𝟎 − 𝟑) vs. 

𝑪𝟐: (𝟒 − 𝟔) 

2nd Tier – part B 

𝑪𝟑: (𝟕 − 𝟔𝟎) vs. 

𝑪𝟒: > 𝟔𝟎 

Models 

(accuracies 

%) 

Train 

set 

Test 

set 

Train 

set 

Test 

set 

Train 

set 

Test 

set 

KNN rule 90 87 81 78 78 76 

Logistic 

Regression 
85 82 63 60 77 75 
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Support Vector 

machine 
87 77 73 65 67 65 

Decision Tree 82 80 69 63 65 60 

Random Forest 83 82 70 62 71 69 

Ada Boost 85 81 65 61 63 62 

       

 

Conclusion 

Cancer treatment is expensive. It is a branch of medicine that does not follow the 

'survival of the fittest,' rather it follows the 'survival of the richest.' Here, Praedico– 

Salvos presents the state-of-the-art framework for predicting the survival of thyroid 

cancer patients. Compared to previous works which were binary, Praedico–Salvos 

predicts survival over four time periods, thereby improving the overall framework. As 

cancer treatment is both painful and expensive, Praedico–Salvos could help 

oncologists determine the likelihood of survival, deciding the best course of treatment, 

based on capacity to endure pain, expected chances of survival, and available finances. 

Compared to existing methods, shown in Table 1, Praedico–Salvos is better as it 
(a) does not impute missing values, (b) is not restricted to binary classification, and (c) 

classifies the survival of the patient into 4 separate bins, each highlighting the 

likelihood of the patient’s survival. 

Looking ahead, Praedico-Salvos holds immense potential for further refinement. 

Integrating regression within each of the four classes, for determining an exact survival 

month presents a compelling avenue for future work. This could enhance the model's 

resolution, potentially predicting survival down to individual months. Additionally, 

exploring the incorporation of factors like treatment response and emerging therapies 

could broaden the scope of Praedico–Salvos, making it an even more valuable tool in 

the fight against thyroid cancer. 

Lastly, the phrase “Praedico – Salvos” is a combination of two Latin words 

‘praedico’ meaning to predict or foretell, while ‘salvos’ translates as survival. Hence, 

we combined the two words ‘predict’ and ‘survival’ into Latin as ‘Praedico – Salvos.’ 
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