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Abstract

Maritime transport contributes approximately 2.5% to global greenhouse gas (GHG)
emissions and faces rising operational costs due to increasing fuel prices. Optimizing
shipboard energy systems has become essential to enhancing sustainability and
efficiency. This paper presents a comprehensive review of artificial intelligence (Al),
machine learning (ML), and deep learning (DL) methods applied to the optimization
and control of ship microgrids. It highlights the architectures, challenges, and benefits
of integrating Al into marine energy systems. A comparative analysis of Al-driven
schemes for energy efficiency, fault diagnosis, and emission reduction is presented.
The findings underline the transformative potential of Al-based control systems in
enabling intelligent, adaptive, and environmentally compliant marine operations.

Keywords: Ship Microgrid, Artificial Intelligence, Machine Learning, Deep Learning,
Renewable Energy, Energy Storage Systems

Introduction

Although Earth is around 4.54 billion years old, humans, who make up just 0.01%
of its life forms have drastically reshaped it in a very short time. Particularly over the
last 50 years, human activity has led to the loss of 83% of wild mammals and nearly
half of plant species, while consuming 30% of known natural resources, putting future
ecological stability at risk. Driven by rapid population growth and environmental
degradation, this impact has intensified. Atmospheric CO: levels, a major driver of
climate change, have climbed from 323 ppm in the 1970s to over 411 ppmtoday. Since
the 1970s, freshwater animal populations have fallen by 75% [1]. According to the UN
Climate Report 2021, greenhouse gas levels hit record highs in 2020 and continued
rising in 2021, with CO: reaching 413.2 ppm 149% above preindustrial levels [2].

The maritime sector is under increasing pressure to minimize its environmental
footprint and improve energy efficiency. According to the International Maritime
Organization (IMO), global shipping emitted over 940 million tons of CO: annually, a
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figure that could rise significantly by 2050 if unaddressed [10][11]. With fuel prices
soaring and stricter emissions regulations being introduced, ship operators are
compelled to seek advanced energy management strategies [3][12].

Recent advancements in electrification have introduced hybrid and all-electric
ship designs. These rely heavily on microgrid technologies that integrate distributed
energy resources (DERs), storage systems, and high-demand variable loads such as
propulsion units [12][13]. However, managing these complex power systems requires
intelligent, real-time control strategies. Traditional rule-based or PID control
approaches lack the flexibility to adapt to non-linear and dynamic marine
environments [14][15][16].

Artificial intelligence, including machine learning and deep learning methods,
has emerged as a promising solution. These techniques offer predictive maintenance,
dynamic power demand estimation, real-time decision-making, and improved load
balancing, ultimately reducing fuel consumption and GHG emissions [17]. This paper
surveys the current state-of-the-art in Al applications to ship microgrids, identifies key
challenges, and outlines future research directions.

Background and Related Work

Microgrids are localized electrical power subsystems that integrate distributed
energy resources (DERS), including both renewable and traditional sources such as
photovoltaic (PV) systems, hydroelectric plants, wind turbines, gas turbines, internal
combustion engines, and microturbines, along with a collection of loads [18], [19].
The U.S. Department of Energy defines a microgrid as “a group of interconnected
loads and DERs with clearly defined electrical boundaries that operates as a single
controllable entity with respect to the grid and can function in either grid-connected or
islanded mode” [20], [21]. Other researchers describe microgrids as “a miniature
power system comprising distributed energy resources, loads, and controllers” [22]
or “a system of movable DERs and multiple loads within the existing power network,
including solar PV, microturbines, wind turbines, and storage devices capable of
operating in grid-connected or stand-alone mode” [23]. The following sections provide
an overview of the different classifications of microgrids.

Classification of Microgrids

Microgrids are classified by topology into AC, DC, and hybrid AC/DC systems
[24], [25], and by application into institutional, utility, industrial/commercial,
transportation, and remote-area categories [26], [27], as shown in figure 1 [28]. AC
microgrids dominate conventional power systems, while DC systems offer higher
efficiency. Hybrid configurations combine both advantages for improved flexibility.
This dual classification framework highlights the technology's diverse
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implementations across sectors. Microgrid architectures have evolved significantly to
accommodate diverse energy resources and operational requirements.

Figure 1: Microgrid classification by topology and application [28].
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AC microgrids remain the most prevalent configuration due to their
compatibility with existing power infrastructure, utilizing power electronic converters
(PECs) to integrate distributed energy resources (DERS) such as fuel cells, wind
turbines, and solar PV systems [29]. These systems enhance power distribution
efficiency in medium- and low-voltage networks while reducing transmission losses
[28]. However, their operation requires precise synchronization of phase angle,
frequency, and voltage with the main grid [30], and the multiple conversion stages
inherent in AC systems can compromise reliability compared to DC alternatives as
shown in figure 2 [31].

?

Figure 2: AC microgrid configuration with interconnected elements [31].
2. DC Microgrids

The emergence of DC microgrids has introduced notable advantages, particularly
in minimizing energy conversion stages and eliminating reactive power complications
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[34,35]. These systems demonstrate particular efficacy in specialized applications
including telecommunications, spacecraft, and data centers [38]. Despite their benefits,
widespread adoption faces barriers such as substantial network restructuring costs,
immature protection schemes, and lack of standardization [36,37]. Recent
technological advancements in power electronics have begun addressing these
challenges, making DC architectures increasingly viable for broader implementation.
Fig. 3 [31] illustrates an example architecture of a DC microgrid.

Figure 3: DC microgrid configuration with interconnected elements [31].
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3. Hybrid AC/DC Microgrids

Hybrid AC/DC microgrids represent an innovative synthesis of both paradigms,
offering enhanced efficiency and reliability through optimized integration of AC and
DC components [39,40]. These systems facilitate direct connection of diverse DERs
and energy storage systems while minimizing power conversion losses [41,42]. The
architecture's complexity, however, demands sophisticated control strategies to
manage synchronization, reactive power flow, and converter interfacing [28]. Current
research focuses on developing intelligent control algorithms to overcome these
challenges and fully realize the potential of hybrid configurations.

Figure 4: An architecture illustrating the structure of a hybrid AC/DC microgrid

[31]..
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The evolution of microgrid technologies reflects an ongoing effort to balance
operational efficiency, reliability, and integration complexity. While AC systems
maintain dominance in conventional applications, DC and hybrid architectures are
gaining traction in specialized domains and future-looking energy systems. This
progression underscores the importance of continued research in power electronics,
control systems, and standardization to address existing limitations and unlock new
applications for microgrid technologies.

Basic Microgrids Architecture

Microgrid architectures typically consist of distributed generation (DG) sources,
distribution systems, PV storage schemes, and communication/control systems [43].
A generic microgrid architecture is shown in figure 5. DG technologies encompass
both emerging solutions (wind turbines, micro hydropower, solar PV) and mature
technologies (induction/synchronous generators) [44]. Combined heat and power
(CHP) systems demonstrate particularly high efficiency (>80%) by utilizing waste heat
[45].

Figure 5: A generic microgrid architecture [43]

JCAI

Journal of Computing and Artificial Intelligence Volume 2, Issue 2, 2024



Artificial Intelligence Techniques for Efficient Control Page |41
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PV systems, while environmentally favorable, face challenges including high
installation costs and weather dependency [46], [47]. Distribution networks may
employ DC, AC (50/60Hz), or high-frequency AC (HFAC) configurations, with DC
systems gaining attention for their power quality advantages [48]. Reliable
communication systems, including power-line carrier, fiber optics, and wireless
protocols, are essential for microgrid operation [44]. Microgrids require robust control
systems to ensure smooth transitions between grid-connected and islanded modes,
especially due to the variability of renewable energy sources [49].

Control Methods of Microgrids

Power flow must be ensured between the microgrid and main grid for seamless
transitions, while the [1G must remain operational post-islanding. Due to the stochastic
nature of renewable sources, suitable AC and DC control strategies are essential [49].

1. AC Microgrid Control Methods:
Various control techniques for AC microgrids are summarized below.

a) LiControl technique for Grid-connected mode: In grid-connected mode,
distributed generation (DG) units are categorized into grid-feeding, grid-forming,
and grid-supporting types [50]. Grid-forming units maintain voltage and
frequency in islanded conditions and synchronize with the main grid when
connected [51]. Grid-feeding units operate under central controllers to manage
active and reactive power flow [52][51], while grid-supporting units utilize droop
control to stabilize voltage and frequency [53].
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b) LControl technique in Islanded mode: In islanded mode, several control
approaches are used. i) The Master-Slave method designates one DG unit as the
master to provide voltage and frequency references, with others following and
central control intervening during abnormalities [54]. ii) The Peer-to-Peer method
allows all DGs to share control responsibilities equally using droop
characteristics, ensuring system balance during load changes [31][55]. iii)
Hierarchical control is structured in three layers: primary control uses droop
techniques for power sharing; secondary control restores voltage and frequency
deviations and handles grid synchronization; tertiary control optimizes economic
dispatch and manages grid interactions [56]. iv) Additionally, the Multi-Agent
System (MAS) enables each DG to function autonomously, making local
decisions while coordinating with peers to achieve overall system objectives [57].

2. DC microgrid control methods

DC microgrid control methods, generally simpler due to the absence of reactive
power and frequency concerns, include several strategies. i) Droop control facilitates
load sharing based on voltage-current characteristics and adapts according to the
energy storage state [56][58][59]. ii) Hierarchical control mirrors the AC structure with
inner voltage/current loops and outer virtual impedance loops for coordinated power
regulation. iii) Hysteresis control provides fast response, commonly used in inverters
and PLCs, although it features variable switching frequencies [60]. iv) Voltage Mode
Control uses a single-loop feedback system to regulate converter output and manage
charging/discharging of energy storage systems. v) MPPT (Maximum Power Point
Tracking) control is vital for optimizing power output from variable renewable sources
like solar PV and wind, typically implemented at the local converter level [49].

Shipboard Micro Grids

Shipboard microgrids share similarities with terrestrial systems but face unique
challenges due to pulsed loads and strict power quality requirements [61]. Energy
storage systems include batteries (notably Li-ion), supercapacitors, SMES, flywheels,
and hybrid configurations, each offering distinct power/energy density tradeoffs [61]-
[69]. Basic power system of a hybrid vessel is shown in figure 6 [62]. Table 1 shows
the advantages and problems of each technology of energy storage. Hydrogen fuel cells
present emission-free potential but require cost reductions [70], [71]. Power quality
issues - including voltage sags, frequency variations, and harmonics - stem from high-
power loads like propulsion systems and electronic weapons [61], [92]-[95].
Classification societies mandate strict voltage (£10%) and frequency (£5%) tolerances
[91], necessitating advanced control solutions for naval applications [74]-[79].

Figure 6: Power system of a hybrid ship [62]
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Table 1: Advantages and problems of multiple energy storage techniques [61]

Storage Category

Advantages

Problems

Battery

Lesser upkeep, more energy
density (for Li-ion)

Quite less power density
and life span

Supercapacitors

More life, rapid charging /
discharging ability

More per watt cost, less
energy density

Superconducting magnetic

High Storage Efficiency, fast

Expensive, cooling

two or more categories

energy storage (SMES) response problems

Flywheels Humid-opposing qua_lllty, More Less den§|ty of energy,
power density mechanical problems

Hybrid ESS Can utilize the conveniences of Costly, need complicated

control algorithms

Hydrogen fuel cells

No greenhouse gas emissions
(GHG)

High cost, drains quickly
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Recent research highlights need for: standardized power quality metrics,
improved ESS control algorithms, and real-time monitoring integration [97]. The
transition toward all-electric ships further emphasizes requirements for robust
hierarchical control architectures capable of managing diverse load time constants
(1ms-500s) [76]-[78]. Continued development of hybrid AC/DC architectures and
adaptive control strategies remains critical for advancing marine microgrid reliability
and performance [24], [25], [96].

Marine vessels encompass diverse electrical loads such as propulsion systems,
pulsed defense loads, hotel and bridge services, and HVAC equipment, all of which
must be considered in the initial power system design to ensure operational reliability
and power quality. Load profiles and total capacity requirements determine key
specifications like cables and switchgear, with dynamic modeling approaches often
used to assess performance under varying conditions [72]. For example, a typical ship
may use two propulsion lines with engines, gearboxes, and propellers, while auxiliary
systems powered by dedicated engines support lighting, ventilation, and passenger
amenities. Heat demands are met through heat recovery systems and auxiliary boilers
when necessary, especially in port or cold conditions [73]. High-power loads,
particularly propulsion motors and pulsed military equipment like electromagnetic
weapons, can significantly affect power quality [74], [75]. Time constants of these
components, ranging from milliseconds to several seconds (as shown in Table 2),
inform control strategies that adapt to each load’s dynamic response [76], [77], [78].
In all-electric vessels, the propulsion system’s dynamics heavily influence the
microgrid’s stability, necessitating control schemes that prioritize critical loads and
coordinate power delivery efficiently across variable time constants, especially in
vessels equipped with advanced detection and pulsed power systems [61], [79].

Table 2: TIME CONSTANTS FOR VARIOUS ELEMENTS IN A SHIP ELECTRICAL
SYSTEM [76] [77]

Component Time Constant
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Vessel warmup time 20-500s
Power generator with Gas turbine 5-10s
Propulsion motor stator leakage 1-10 ms
Propulsion motor 1-5s
Pulse duration modulation 0.5-2ms
DC to DC converters 100 - 500 ms
Motor service loads Test 05-1s
Time constant of propulsion motor rotor 50ms—-1s

According to IEC standard 61000-4-30, power quality in shipboard microgrids is
assessed based on deviations from technical benchmarks, with common issues arising
from voltage waveform disturbances due to cyclic and non-cyclic load transients [90],
[61]. The major problems in power quality of marine microgrids are enlisted in Table
3. Harmonics and frequency deviations primarily affecting AC systems are
increasingly prevalent due to the rise in power-electronics-based loads and generators,
while voltage deviations impact both AC and DC systems. As ships adopt “more-
electric” architectures, maintaining power quality has become more complex,
prompting classification societies to standardize acceptable limits to mitigate risks to
vessel operation, cargo, and crew [91]. Voltage and frequency limits for marine AC
systems are detailed in Table 4, ensuring equipment resilience during deviations [61].
To further enhance system reliability, energy storage systems (ESS) are employed to
smooth transients and support real-time power balance, contributing to safer and more
robust shipboard power networks [96]. Nonetheless, challenges persist, including
outdated standards, limited modeling fidelity, and a lack of real-time monitoring.
Proposed improvements include revising classification rules, updating evaluation
methods, and enhancing system models to better reflect operational and environmental
conditions [97].

According to IEC standard 61000-4-30, power quality in shipboard microgrids is
assessed based on deviations from technical benchmarks, with common issues arising
from voltage waveform disturbances due to cyclic and non-cyclic load transients [90],
[61]. Harmonics and frequency deviations primarily affecting AC systems are
increasingly prevalent due to the rise in power-electronics-based loads and generators,
while voltage deviations impact both AC and DC systems. As ships adopt “more-
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electric” architectures, maintaining power quality has become more complex,
prompting classification societies to standardize acceptable limits to mitigate risks to
vessel operation, cargo, and crew [91]. Voltage and frequency limits for marine AC
systems are detailed in Table 4, ensuring equipment resilience during deviations [61].

Table 3: Power quality problems classification in ship microgrid. [61]

Problem in Quality of Probable Reason(s)

Power
Voltage Sag/Dips Bow Thruster [92], Electronic Weapons for Rapid-Response
[93]
Frequency Drop

Switching of Larger Loads [94]
Voltage Variations (Flickers)

Radar System [63]
Harmonics

Loads and Generator being Power Electronically Interfaced
Voltage Swell [95]

Radar System [63]

Table 4: Acceptable voltage and frequency alterations in ac systems [61]

Deviations

Quantity within Operation | Permanent | Transient (Time for Recovery)

(percent) (percent)
Voltage +6to+-10 | +20(1.55)
Frequency +5 +-10 (55)

The Continuous Need for Improvement

To further enhance system reliability, energy storage systems (ESS) are
employed to smooth transients and support real-time power balance, contributing to
safer and more robust shipboard power networks [96]. Nonetheless, challenges persist,
including outdated standards, limited modeling fidelity, and a lack of real-time
monitoring. Proposed improvements include revising classification rules, updating
evaluation methods, and enhancing system models to better reflect operational and
environmental conditions as shown in Table 5 [97].
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Table 5: Improvements required in ship power systems [97]

Problems Possible Improvement(s)
Insufficient rules of ship classification, Newer and clearer rules should be presented by
unclear definitions of basic quantities. ship classification societies

Inappropriate standardized methods for
power quality evaluation and signal
processing tools

Definition of up to date assessment methods and
tools

Integration of real-time power quality monitoring

Inefficiencies in the shipboard power e
capabilities into power management system

system (PMS)

Faults in ship’s designing, trial and Suitably refined models of upcoming ship
exploitation phases systems should be prepared

Issues occurring in systems modeling of Environmental states impact and system's
ship or development of assessment

techniques real aspects should be considered

Numerous studies have demonstrated the advantages of Al-based control in
marine systems. Applications include optimal energy scheduling, fault detection, load
forecasting, and adaptive control using neural networks. These studies have reported
improvements in fuel economy, emission reduction, and fault resilience. However,
challenges remain in generalization, explainability, and hardware integration.

Avrtificial Intelligence Methods for Shipboard Microgrid Optimization

Artificial Intelligence (Al) encompasses various subfields, including Machine
Learning (ML), Deep Learning (DL), and Rule-Based Systems (RBS) [99]., each
offering unique advantages for the optimization and control of shipboard microgrids.
The choice of Al technique depends on the nature of the application, data availability,
and required precision.

A.Machine Learning Techniques

Machine Learning (ML) enables computer systems to improve performance on
specific tasks through data-driven experience. It involves designing algorithms that
can learn from historical data and make predictions or decisions without being
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explicitly programmed. For instance, a diagnostic ML system trained on medical
records can enhance its accuracy in detecting cancer as it learns from more patient
data. Applications of ML span diverse domains including robotics, intelligent personal
assistants, pattern recognition, data mining, traffic prediction, healthcare diagnostics,
cybersecurity, agriculture, and natural language processing [98].

Types of Machine Learning Algorithms
1. Supervised Learning

Supervised learning involves training algorithms on labeled datasets to predict
outcomes or classify inputs. Figure 7 a) shows the basic workflow of the supervised
learning models. Key algorithms include:

Decision Trees: These are hierarchical models that recursively partition data based on
feature values. They are interpretable and handle both numerical and categorical data
well, but can be sensitive to overfitting and data variability [101], [102].

Naive Bayes (NB): Based on Bayes’ theorem, NB classifiers assume feature
independence and are particularly effective in text classification tasks. They are
computationally efficient but may perform poorly when classes are highly imbalanced
or dependent [102].

Support Vector Machines (SVMs): SVMs seek optimal hyperplanes for separating
classes in high-dimensional space. They perform well with structured data but scale
poorly with very large datasets and noisy features [103].

Regression Analysis: This technique models relationships between dependent and
independent variables. Widely used for forecasting and trend analysis, its efficacy
depends on correct model selection and sufficient data [102], [103].

Figure 7: Supervised learning and Unsupervised Learning workflow (a) Supervised
learning workflow [101] )
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Figure 8: Supervised learning and Unsupervised Learning workflow (b) Unsupervised
Learning workflow [103]
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2. Unsupervised Learning

Unsupervised learning operates on unlabeled data, identifying intrinsic structures
or patterns as shown in Figure 7 b). The two fundamental unsupervised learning
algorithms are K-means clustering and Principal Component Analysis (PCA).

K-Means Clustering: It partitions data into K predefined clusters by minimizing
intra-cluster variance. While efficient, its performance depends heavily on the choice
of K and cluster shapes [102], [103].

Principal Component Analysis (PCA): PCA reduces data dimensionality by
transforming correlated variables into orthogonal components, aiding in visualization
and preprocessing [101].

3. Semi-Supervised Learning

Semi-supervised learning leverages a small amount of labeled data with a larger
unlabeled dataset. It is effective when labeling is costly. K-Nearest Neighbors (KNN),
a non-parametric method that assigns class labels based on proximity to labeled
instances. Though simple and intuitive, its computational cost increases with dataset
size and dimensionality [102].

4. Reinforcement Learning
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Reinforcement learning models learn through interaction with the environment,
using reward and penalty signals. These are well-suited for sequential decision-making
tasks such as control systems and gaming applications [103].

5. Ensemble Learning

Ensemble learning integrates multiple models to enhance accuracy and
robustness. Random Forest (RF), an ensemble of decision trees built on random data
subsets using bagging. RF improves generalization and reduces overfitting, making it
effective for both classification and regression tasks [103].

Applications of Al Methods
1. General Applications Across Domains

Machine learning (ML) has found widespread application across multiple
domains. In drug discovery, ML supports processes such as target validation,
identification of prognostic biomarkers, and analysis of digital pathology records in
clinical trials [109]. Since the 2010s, the emergence of advanced ML techniques has
significantly enhanced intelligent fault diagnosis (IFD) by enabling end-to-end
prognostic models that link real-time monitoring data to machine health states using
deep learning approaches [110]. ML is also increasingly employed in risk assessment,
offering data-driven enhancements to traditional methods, particularly as large
volumes of socio-technical system data become available. This trend supports the real-
time industrial adoption of ML for more accurate and timely decision-making [111].
In the domain of Customer Relationship Management (CRM), ML has transformed
customer interaction strategies through predictive analytics. Techniques such as neural
networks, decision trees, support vector machines (SVM), and logistic regression are
commonly used to improve CRM efficiency and customer feedback analysis [112].
Agricultural technology has also benefited from ML, where integration with sensor
data and high-performance computing has led to Al-enabled farm management
systems, improving productivity and decision-making [113]. Within industrial
environments, ML plays a critical role in evolving traditional manufacturing systems
towards Industry 4.0. Applications span maintenance, quality control, production
planning, and supply chain management, with quality management receiving the most
attention due to its direct impact on profitability [114]. In structural design and
performance assessment (SDPA), ML aids in structural condition monitoring, risk-
informed decision-making, and performance forecasting by extracting patterns from
complex, high-dimensional data. This is particularly important for aging infrastructure
and modern construction systems requiring robust and scalable analytical frameworks
[114].

2. Applications in Electric and Marine Systems
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The integration of machine learning (ML) into electric and marine systems has
emerged as a promising area of research and application. In the evolving landscape of
smart grids, where Internet of Things (loT)-enabled devices generate vast volumes of
data, ML offers effective tools for data analysis and anomaly detection. These tools
are essential for handling cyber threats and ensuring secure grid operation through both
supervised and unsupervised learning methods as elaborated in Figure 8 [115]. The
rise of Al 2.0, a data-driven phase of artificial intelligence, further enhances smart
energy and electric power systems (Smart EEPS), particularly in Smart Grids (SG) and
Energy Internet (EI), where ML is leveraged to make predictive decisions from
historical and synthetic data [116].

Figure 9: Employing machine learning in smart grid security [115]

Data Anamoly Malware
Exploration Detection identification

Anamoly
Detection

Spam

Risk scoring o

Entity
classification

In the marine sector, ML contributes to reducing greenhouse gas emissions and
improving energy efficiency by optimizing shipboard electric power systems.
Dynamic positioning systems (DPS), which help maintain vessel position in adverse
sea conditions, depend on accurate power demand forecasting—an area where ML-
based prediction models significantly enhance diesel generator (DG) and energy
storage system (ESS) management [117], processing to improve marine energy
systems in shown in Figure 9 [117].
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Figure 10: Basic modeling process of applying machine learning on ship data
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Artificial neural networks (ANNSs) and rule-based learning have also been used
to optimize shipboard power performance [118]-[121]. Fuel consumption prediction
is another critical application, where ML models based on real-time engine data offer
accurate forecasting without the need for additional sensors, reducing operational costs
and enhancing energy modeling [122]-[124]. A simple representation of machine
learning based fuel consumption estimation model is presented in Figure 10. Predictive
maintenance, driven by ML, allows early detection of potential faults, thereby
improving reliability and reducing energy inefficiencies [125]

Figure 11: Machine learning for estimation of Fuel consumption [124]
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In terms of cybersecurity, ML aids in detecting false data injection attacks that
can mislead energy management systems (EMS) and compromise grid operations
[126]. Moreover, for naval and maritime security, ML-based surveillance and
classification systems outperform traditional radar technologies by improving threat
detection, wvessel identification, and situational awareness [127], [128]. Smart
surveillance systems are essential for securing coastal regions and harbors against
unauthorized intrusions [129].Finally, ML supports collision risk prediction in marine
traffic through the computation of the Collision Risk Index (CRI), enhancing
navigational safety and decision-making efficiency as elaborated in Figure 11 [130]..

Figure 12: Gray box model for ship power prediction [125]
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Choice of Learning Technique

The selection of an appropriate learning technique—be it machine learning, deep
learning, or rule-based algorithms—depends on the specific requirements and
constraints of the system under consideration. Key factors influencing this decision
include the type and structure of input data, the availability of labeled or unlabeled
data, and the nature of the desired output. Among the various techniques, artificial
neural networks (ANNS) have been identified as the most widely used in the modeling
of shipboard power systems. However, a diverse set of algorithms, including
subcategories of ANNs and other learning paradigms, are also employed depending on
the application context and complexity.

Data Preparation and Feature Selection

Effective machine learning modeling requires meticulous data preparation and
feature selection. When data is sourced from various case studies, it often contains
redundant or irrelevant information that must be filtered out. Figure 13 illustrates a
generic flowchart for ship load forecasting using ML, outlining the main steps in data
preparation [163]. All data entries with invalid or unscalable values should be
removed, as such data can distort distance-based computations crucial to many ML
algorithms. Relevant data must be mapped to appropriate class labels according to the
specific system under study, ensuring accurate classification during training. To avoid
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temporal bias, data should be sorted by class and then randomized before dividing into
training and testing sets. Datasets should be partitioned into mutually exclusive
training and testing subsets of appropriate sizes to balance precision and training
efficiency. Any data variation and justification for sample sizing should be reported in
the results. Finalized data should be formatted and compiled into designated training
and testing files that meet the simulation or algorithmic requirements.

Figure 13: A generic flowchart for ship load forecasting using ML [163]
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Literature Review of Machine Learning-Based Marine Microgrids

An optimized EMS for diesel-electric vessels is proposed in [132], employing
unsupervised learning algorithms (k-means and k-medoids) to extract patterns from
historical data, combined with mixed-integer linear programming (MILP) to minimize
fuel consumption. The system integrates a predefined optimal ESS charging state as a
reference for the PI controller. Evaluated on a hybrid-electric ferry operating cyclically
in an urban environment, the system demonstrated accuracy ranging from 87% to 99%.

A fault diagnosis method for MVVDC marine power systems is presented in [119],
using Noise-Assisted Multivariate Empirical Mode Decomposition (NA-MEMD) for
signal decomposition and Multilevel Iterative LightGBM (MI-LightGBM) for
classification. Intrinsic Mode Functions (IMFs) extracted from voltage signals are used
to compute energy moments, forming the fault feature vector. Simulations conducted
using AppSIM validated its high precision and engineering applicability.
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In [133], several ML techniques including Bayesian networks, radial basis
function networks, decision trees, support vector machines (SVMs), and nearest
neighbor classifiers are compared for fault detection in shipboard electronic
components. The study provides early-stage comparative insights into their
effectiveness.

The authors in [122] utilize ridge regression, LASSO, multiple linear regression,
boosting, tree-based algorithms, and support vector regression to predict marine fuel
consumption. K-fold cross-validation and error metrics such as MAE, RMSE, and
R2R"2R2 were employed. Engine RPM, shaft indicators, and scavenged air
parameters were identified as key features. Multiple linear and ridge regression models
achieved the best performance with an MAE of 0.002, RMSE of 0.0001, and R2R"2R2
of 99.9%.

A study in [134] applies an online sequential extreme learning algorithm with an
adaptive kernel to manage signal uncertainty in real-time ship power systems. Using
data from two sea conditions, the method employs three adaptive factors to control
kernel scaling, resulting in accurate real-time predictions. In [123], a genetic algorithm
is used to optimize both model selection and hyperparameters for fuel consumption
prediction using noisy sensor data from a Baltic Sea vessel. Implemented entirely with
open-source Python tools, the model shows promise for onboard deployment.

Reference [124] presents another ML-based fuel prediction model using multiple
linear regression. Noon report data is split into training and testing sets, and the model's
predictions are validated against actual data. In [135], ship speed is predicted using
AIS and weather data from 76 vessels over one year. Results indicate the ML model's
effectiveness in forecasting speed based on selected features. A fault identification
method in [125] integrates Expected Behavior Models with Exponentially Weighted
Moving Average (EWMA). Using polynomial ridge regression, it accurately predicts
faults in exhaust gas and air pressure of the main engine, supporting preventive
maintenance. An optimal shipboard PMS is proposed in [136], utilizing Naive Bayes
classification to determine operational states based on real/reactive power and
generator status. The OPF method quantifies load losses, and real-time training updates
improve system adaptability. The scheme achieves 97.67% accuracy with a processing
time of 25 ms.

Reference [137] assesses ML for incident likelihood prediction during the US
Atlantic hurricane season. Support Vector Machines yielded 95% recall and 92%
accuracy, highlighting the potential for intelligent vessel routing and maritime risk
assessment. A Bayesian ML approach in [138] is integrated with Axiomatic Design
principles for sustainable ship propulsion system design. It enables probabilistic
evaluation of design parameters and identification of hidden couplings in early design
stages. An integrated monitoring methodology is proposed in [117], combining
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Gaussian Mixture Models and PCA for fault detection. It uses long-term voyage data
to train models, facilitating identification of common operating states and early-stage
machinery failures.

In [139], a reinforcement learning-based PMS uses Q-learning to minimize fuel
consumption by modeling the ship's power network as a Markov Decision Process.
Applied to cruise ship data from the Baltic Sea, the model achieves approximately
0.9% fuel savings, equating to 32 tons annually. Reference [140] explores the
feasibility of predictive fuel modeling using Azure ML Studio.

The multiple linear regression model processes 10T ship data with an R2R"2R2
value of 0.9707, validating its effectiveness for real-world applications. A hybrid
voyage optimization model is presented in [141], combining semi-empirical methods
and ML via XGBoost. It predicts additional resistance using metocean, ship profile,
and motion data. Case studies across three ships show ML reducing discrepancy from
over 40% to below 1%. Data gap analysis in [142] compares single ML models and
meta-models using real ship operation data. Meta-models achieved <5% MAPE and
RRMSE, offering accurate anomaly detection and condition monitoring.

In [143], ML algorithms (SVM, MLP, GLM, RF) are evaluated for predicting
LPG ship energy efficiency. Random Forest achieved the lowest RAE (2.304%) and
RMSE (17.2632), demonstrating its superior regression performance. An intrusion
detection system using image processing and SVM is proposed in [129], aimed at
detecting unauthorized ships in dynamic coastal environments, enhancing maritime
security. Reference [126] presents a defense mechanism against false data injection
attacks (FDIA) in ship power systems. Using deep learning and importance indices,
the model outperforms traditional techniques with 90% higher accuracy.

Another IDS for the NAVFAC smart grid is introduced in [144], using a KNN-
based classifier to detect web, DOS/DDOS, and port scan attacks. Optimizing the k-
value improves response classification while minimizing SOC load. An intelligent
video surveillance system (AIVS3) is proposed in [127] using computer vision and
ML for shipboard security. It identifies, classifies, and tracks threats, triggering alerts
to a man-in-the-loop (MITL) interface.

In [130], ML is integrated with Dempster—Shafer (D-S) theory for Collision Risk
Index (CRI) prediction. Gradient Boosting Regression enhances speed and accuracy.
Simulations show the model’s compliance with COLREGs and high reliability.
Bayesian Networks trained on AIS data are used in [145] for anomaly detection,
combining static and dynamic models. The hybrid approach increases performance
and interpretability. Sea Spotter, a third-generation naval IRST system in [146],
integrates custom ML for target acquisition and tracking. The study discusses design
constraints and implementation methodology, showing improved imaging and threat
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recognition. Table 6 summarizes the reviewed works, categorizing them by algorithm
type and marine system components involved in ML-based optimization.

Table 6: Summary of machine learning algorithms applied to vessel energy systems
and hardware platforms

Hardware

ML Algorithm Used component gbjec_tlv_e/
improved escription
g(ejs;lsesnglnes Optimizing the ESS

[132] k-means or k-medoids (energy of Hybrid-Electric
ships containing
:;?srti?ne) Cyclic Operations
Noise-Assisted Multivariate Empirical \%Ttdal gggc Fault diagnosis of
[119] Mode Decomposition (NA-MEMD) (MVDC) medium-voltage DC
and Multilevel Iterative LightGBM shipboard power

(MI LightGBM) power system system
cable

Diagnosis and
spotting of faults in

Decision trees; radial basis function marine power

[133] networks; Bayesian networks; nearest MVDC power | systems by
neighbor classifiers; and support vector | system cable automated

machines monitoring of power

electronic
components

Multiple linear regression, Ridge &

LASSO regression, Kernel Ridge

regression, Bayesian Ridge regression, .

Support Vector regression, K-Nearest g_c;fmpartlson c;]f

Neighbors, Multi-Layer Perceptron . . Iierent machine

[122] - - . Main engine learning algorithms
regression, Decision tree regression, to improve ship fuel

Random Forest regression, Ada Boost

. . . usage

regression, Gradient Boosting

regression, Hist Gradient Boost

regression

Model presented to

Adaptive kernel based online Thrusters, prov_ldg accurate_

[134] . - . generators, prediction of online
sequential extreme learning machine c : -
onverters shipboard electric
power fluctuations
Optimization of
[123] Auto machine learning (AML) Main engine prediction of Ship
Fuel Consumption
Optimized
[124] Multiple linear regression Main engine forecasting of Ship

Fuel Consumption
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Decision Tree Regressor, Random
Forest Regressor, Extra Trees

Comparison of
multiple ML

[135] Regressor, Gradient Boosting Engines Approaches for
Regressor, Extreme Gradient Boosting prediction of ship
Regressor speed
Optimal regression model
(Multiple linear ridge regression,
Ordinary Least Squares (OLS) single Fault detection in
[125] linear regression, multiple polynomial Main engine ship systems
ridge regression. operations
And OLS single polynomial
regression)
Diagnosis Support
[136] Naive Bayes Network(NBN) MVAC power of marine power
system cable
systems controls
Monitoring approach
. Propeller, for ship safety in
[137] Support Vector Machines (SVM) Main engine extreme weather
conditions
Theoretical design
Main ofaship's traditional
propulsion propulsion system is
[138] Bayesian Network Model engine, Main presented using
diesel engine, sustainable
hull engineering
principles
Gaussians Mixture Model (GMM), Design approach of
[117] EM (expectation—maximization) Main engine Ship Monitoring
Algorithm System is given
Optimization of
[139] Reinforcement learning (RL) Main engine, autono_mous cgptrol
power system of marine auxiliary
power networks.
ML Objective/ ML Algorithm
Algorithm | Hardware component improved JeCHIVe g
Used Description Used
Model proposed for
Multiple regression . . predictive modeling
[140] model (MLR) Main engine of vessel fuel
consumption
Designing speed-
. Propeller, power models for
[141] XGBoost algorithm Main engine optimization of

ship’s voyage
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Generalized linear model (GAM), Main engine (I;/:i;rgggr?roofposed for
[142] grad|_ent _boostlng regressor (C.;BR)' and Navigation ’ abnormal data
multivariate adaptive regression
- sensor among collected real
splines (MARS) : .
time marine data.
Multilayer preceptor (MLP), Main Pre_d!ctlon of energy
. - . efficiency of
[143] Generalized linear model (GLM) propulsion seanoing vessels b
regression, random forest (RF), engine, Main a % ing different y
support vector machine (SVM), diesel engine I\ﬁf_) Zlggrithms

Table 7 provides an overview of the related literature in terms of components
involved in the papers that used machine learning to avoid intrusions and faults in
marine power systems.

Table 7: MI algorithms for ship power systems focused on intrusion and fault
mitigation

. Attack on/ I i
ML Algorithm Used Fault in? Objective/ Description
[129] Support Vector Machines Intrusion Ship’s Intrusion Detection System
(SVM) detection system | is presented
. : Research presented for detecting
[126] (SSU\BR/?)” Vector Machines Eosjlt\g;grld fake data injection attack in smart
Y ship power systems
[144] K-Nezflrest Nelg_hbors Smart grid Detectlo_n of cyberattack on a navy
Machine Learning smart grid
Support vector machine Attack by : L
[127] | (SVM), multi-class Naive terrorists and ;Etrf/lé:?; Tczustoggrtﬁ?sm?\;?ne video
Bayes Classifier. pirates y g
[130] Gradient boosting regression | Lessen risks of Ship collision risk estimation
(GBR) ship collision model is presented
[145] | Bayesian Networks Deviation from Mgdel for anomaly detection in
route ship tracks
: : . Target :
[146] Offline Supervised Learning acquisition and Infrared warning mpdel for navy
model tracking surface vessels is given

DEEP LEARNING METHODS IN SHIP MICROGRIDS

DL techniques, including Convolutional Neural Networks (CNNs) and Long
Short-Term Memory (LSTM) networks, are highly effective in handling non-linear
time-series data and dynamic system behavior. These methods excel in tasks such as
propulsion system load forecasting and condition monitoring. Deep Learning (DL), a
subdomain of Machine Learning (ML), is fundamentally built upon artificial neural
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networks (ANNS) and surpasses conventional ML and shallow learning techniques in
numerous complex applications [147]. With the advent of advanced learning
algorithms and refined pre-processing techniques, deep neural network architectures
have emerged as powerful tools for learning complex patterns, collectively known as
Deep Learning [148], [149]. A hierarchical depiction of the relationship among ML,
ANNSs, and Deep Neural Networks is illustrated in Fig. 12 [148].

Figure 14: A generic flowchart for ship load forecasting using ML [163]
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Artificial Neural Networks are biologically inspired algorithms primarily used in
supervised learning. Modeled after the brain's structure, they consist of interconnected
units called neurons, mimicking the behavior of biological neurons—each composed
of dendrites (input receivers), soma (processing unit), nucleus (central control), and
axon (output transmitter). ANNSs typically operate over three layers: input, hidden, and
output. The network is trained through iterative adjustment of weights associated with
interconnections, enabling parallel distributed processing. Various DL architectures
have evolved from ANNSs, including Extreme Learning Machines (ELM), Recurrent
Neural Networks (RNN), and Deep Neural Networks (DNN). A schematic
representation of a neural network’s operation is provided in Fig. 13 [101].
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Figure 14: Working of neural networks [101]
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Deep neural networks (DNNs) have demonstrated significant capabilities across
various domains. In computing, DNNs have been applied for bot detection on social
platforms. A model combining Long Short-Term Memory (LSTM) and DNNs is
proposed in [150] for accurate identification of bots on platforms like Facebook and
Twitter. Similarly, [151] integrates Convolutional LSTM (CLSTM) with DNNs for
robust anomaly detection in web traffic based on user activity and data transmission
volumes. In the medical domain, DL models have shown efficacy from drug
identification to disease diagnosis. In [152], a DNN employing Discrete Wavelet
Transform (DWT) and Principal Component Analysis (PCA) is proposed for brain
tumor classification using MRI data. Likewise, [153] uses deep convolutional
networks for diagnosing dental issues, while [154] presents a CNN-based method for
retinal alignment offering a cost-effective and non-invasive solution.

Deep Learning Applications in Marine Microgrids

Deep learning algorithms play a significant role in enhancing the performance of
marine microgrids. Waterborne transportation, being a cost-effective mode of global
trade, demands advanced systems for navigation, energy management, and vessel
performance optimization [155]. Deep learning techniques have been extensively
applied to shipboard power systems to improve their efficiency. For instance, power
consumption forecasting using deep neural networks has facilitated economic dispatch
and operational scheduling under sea disturbances by employing nonlinear regression-
based models [12]. Hybrid-electric vessels (HEVs), which integrate internal
combustion engines with energy storage systems (ESS), are gaining traction in
maritime transport due to their potential to reduce fuel consumption and CO. emissions
[156], [157], [20].

In alignment with the Paris Agreement under the United Nations Framework
Convention, shipbuilders are increasingly focusing on reducing greenhouse gas (GHG)
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emissions [158]. Electrification of ship systems is a key strategy in this regard. All-
Electric Ships (AES) power both propulsion and auxiliary systems from a unified
energy source, contributing to reduced GHG emissions and enhanced renewable
energy integration [159]-[161]. Naval ships, in particular, benefit from these
architectures due to their varied and mission-critical load demands, including sensors
and weaponry.

The full electrification of marine systems requires Integrated Power Systems
(IPS), which often incorporate hybrid energy setups comprising diesel engines,
batteries, fuel cells, supercapacitors, and renewable sources such as solar energy.
These hybrid systems address challenges such as slow dynamic response of certain
sources (e.g., fuel cells), resource intermittency (e.g., solar unavailability during
nighttime), and the weight and cost constraints of energy storage devices. To manage
these complexities, fuzzy logic controllers are implemented in real-time power
management schemes to prevent issues like battery overcharging from regenerative
braking [162]. Accurate forecasting of solar power is critical for shipboard PV
systems, which face more variability than onshore installations due to weather changes
and vessel motion. Deep learning-based hybrid models can provide interval forecasts
for PV power output. An example of such a model is illustrated in Fig. 4.3 [163].

Ensuring a continuous power supply is vital for electric vessels operating under
dynamic and hostile environmental conditions. Anomalies in the marine power system
can disrupt power delivery and damage electrical equipment. Fast and reliable fault
detection and isolation are crucial to prevent outages and maintain operational integrity
[164]. Additionally, forecasting maritime traffic is essential for safe navigation and
efficient management of maritime transport. Many existing models offer localized,
short-term predictions. However, deep learning-based systems enable long-term traffic
forecasting over large regions, which is vital for vessel traffic service (VTS) operations
in congested harbor areas [165], [166].

Medium Voltage DC (MVDC)-based shipboard power systems can be considered
as isolated microgrids, powered by distributed generators (DGs). While efficient, these
systems are more vulnerable to faults, often causing high fault currents and posing
severe safety threats. Fault diagnosis in MVDC systems is still in its infancy, with both
conventional methods—such as directional protection, overcurrent protection
(AC/DC), and current differential protection—and advanced techniques including
wavelet transforms (WT) [169], short-time Fourier transform (STFT) [170], and
artificial neural networks (ANNSs) [114] being explored [167], [168]. False Data
Injection Attacks (FDIA) also pose a serious risk to shipboard microgrids. These
attacks compromise data integrity by altering state estimates, which can disrupt
operations, lead to system failure, and potentially cause total blackouts. FDIA was first
introduced by Yao Liuin [171].
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Literature Review of Deep Learning in Marine Microgrids

An intelligent technique based on Artificial Neural Networks (ANNSs) was
introduced in [172] for controlling a ship's hybrid power system using past operational
data. The proposed electric power system utilizes a fuel cell as the DC power source,
with photovoltaic (PV) modules serving as the primary energy source during sufficient
daylight conditions. Upon the absence of sunlight, the fuel cell is engaged to meet
power demands. MATLAB simulations demonstrated the system’s ability to select the
energy source and compute power output dynamically according to shipload
requirements.

In [12], a deep learning approach was developed for Dynamic Positioning (DP)
ships to predict the power consumption of thrusters under varying sea conditions.
Nonlinear regressive neural networks were used to forecast the power demands of
generators during disturbances. The predicted data was integrated with Power
Management Systems (PMS) and Dynamic Positioning Systems (DPS), improving
engine performance and reducing both fuel consumption and greenhouse gas (GHG)
emissions. Mixed-Integer Nonlinear Programming (MINLP) was conducted using
GAMS, with simulations executed in MATLAB.

A control system proposed in [173] applied both ANN and Extreme Learning
Machine (ELM) methods to optimize a marine loading arm plant. Temperature and
gas sensors (DHT11 and MQ for ammonia detection) were employed to regulate a
safety device. Simulation results revealed that ELM outperformed ANN, achieving an
error rate of less than 0.4%, thereby making it viable for safety enhancement and
ammonia gas leakage prevention.

A method for modeling inland ship velocity under dynamic environmental
conditions was proposed in [155]. The study employed Density-Based Spatial
Clustering of Applications with Noise (DBSCAN) to categorize environmental data,
including water levels and wind parameters. A Generalized Regression Neural
Network (GRNN) was then used to predict vessel speed. A case study on a ship
operating on the Yangtze River confirmed the model's accuracy in estimating ship
velocity. In [163], a hybrid ensemble method for interval prediction of onboard solar
power was proposed based on a stochastic motion ship model. Machine learning
algorithms such as Back Propagation Neural Network (BPNN), Elman Neural
Network, Radial Basis Function Neural Network (RBFNN), and ELM were combined
with Particle Swarm Optimization (PSO). The model was tested on a solar-equipped
oil tanker traveling from Dalian (China) to Aden (Yemen). The results validated the
model’s reliability in predicting solar energy output under navigation constraints.

A classification model using Long Short-Term Memory (LSTM) auto-encoders
and short-time Fourier transform (STFT) was developed in [174] for fault detection in
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DC pulsed load monitoring. The system reconstructed pulse signals to detect
abnormalities based on residual differences between actual and predicted signals.
Trained on 20 coil gun pulses sampled at 10 kHz, the model achieved 97.88%
classification accuracy.

An ANN-based technique for fault categorization and localization in shipboard
MVDC systems was proposed in [164]. It used transient waveform data of voltage and
current to train and validate multiple ANN modules. The method was simulated in
PSCAD on a medium-voltage DC cable system. Results showed effective fault
classification and location detection, except in 30 cases of positive rail-to-ground
faults. Another fault detection and classification method based on ANN was presented
in [175], utilizing Wavelet Transform Multiresolution Analysis (WT-MRA) and
Parseval’s theorem for feature extraction. Daubechies 10 (db10) was selected as the
mother wavelet with a decomposition level of 9. The model demonstrated the ability
to classify various fault types, including DC/AC bus faults and ground faults, when
simulated in MATLAB.

A Generative Adversarial Network (GAN)-based method was proposed in [176]
for fault detection and localization under imbalanced datasets. Synthetic training
samples were generated using a deep convolutional GAN, and feature extraction
techniques were used to minimize input dimensionality. A Random Forest (RF)
classifier trained on both real and synthetic data achieved a classification accuracy of
99%, using real-time simulation data from a PSCAD/EMTDC power system model.
An intelligent Energy Management System (EMS) was introduced in [177] for marine
vessels, developed using an Adaptive Neuro-Fuzzy Inference System (ANFIS). The
power source included a Proton Exchange Membrane Fuel Cell (PEMFC) and a battery
bank as energy storage. Simulations were conducted in MATLAB using hardware-in-
the-loop testing, demonstrating the system's capability in reducing GHG emissions and
enhancing power system reliability.

In [178], three machine learning models—Nonlinear Partial Least Squares
Regression (NL-PLSR), Nonlinear Principal Component Regression (NL-PCR), and
probabilistic ANN—were employed to analyze hydrodynamic performance using
onboard data from two sister ships. These models were used to detect performance
trends influenced by propeller and hull cleaning, with the probabilistic ANN yielding
the highest accuracy. A fuel consumption forecasting model for a 13,000 TEU
container ship was presented in [179], integrating operational data and domain
knowledge to select relevant input features. Both Multiple Linear Regression (MLR)
and ANN were applied, with ANN achieving prediction accuracies ranging from
0.9709 to 0.9936. Sensitivity analysis determined an optimal draught of 14.79 m under
standard conditions, closely aligning with the ship’s design draught. In [180], a Radial
Basis Function Neural Network (RBFNN) model was used to estimate resistance for a
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13,500 TEU vessel at various drafts. Ship features were normalized, and prediction
performance was compared across five ML algorithms, including SVM, BPNN,
Random Forest, and XGBoost. The RBFNN exhibited superior predictive accuracy for
the total resistance coefficient.

A large-scale integrated dataset comprising Automatic Identification System
(AIS) data and European Centre for Medium-Range Weather Forecasts (ECMWF)
data was used in [181] to train ML models for vessel propulsion power forecasting.
The dataset, processed on a Spark cluster, included records from 228 vessels over 50
months. Performance across different deep learning models was compared, identifying
the best-performing architectures for this task. A fuel oil consumption prediction
system based on a backpropagation ANN algorithm was introduced in [182], trained
using real operational data from a Vietnamese bulk carrier. The input was derived from
two years of noon-log reports. The probabilistic system demonstrated its potential to
enhance EMS efficiency onships. A ship powering estimation model was proposed in
[183] for use during preliminary ship design, integrating graph theory with a
Multilayer Perceptron (MLP) neural network. Following hull parameter analysis, the
ML model exhibited an average absolute error of 23%, compared to 17.5% for an
analytical model, indicating its applicability in early design stages.

Asstudy [184] presented a comparative analysis of multiple regression data-driven
algorithms to predict fuel oil consumption by ship main engines, based on two different
shipboard data acquisition schemes: noon reports and Automated Data Logging and
Monitoring (ADLM) systems. Several regression algorithms were evaluated, including
Extra Trees Regressors (ETRs), Artificial Neural Networks (ANNSs), Random Forest
Regressors (RFRs), Support Vector Machines (SVMs), and ensemble methods.
Among these, ETRs and RFRs yielded the highest accuracy for both acquisition
schemes, with the ADLM system improving prediction accuracy by up to 7% and
reducing data collection time by 90%. These approaches demonstrated the ability to
forecast fuel consumption accurately across various sailing conditions.

An ANN and Multi-Regression (MR) based model was proposed in [185] for the
estimation of ship power and fuel consumption. The model is designed for real-time
operational environments and is developed using intensive datasets rather than
traditional noon reports. This model was further applied in a Just-In-Time (JIT) voyage
scenario to predict potential fuel savings. In [186], machine learning techniques were
employed to estimate ship power performance using functional datato build regression
models. These models integrate domain knowledge based on physical laws to
minimize overfitting during regression. Environmental uncertainty was also
considered to assess prediction reliability. The developed models can predict ship
speed and engine power under various operational and meteorological conditions.
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The Levenberg—Marquardt algorithm, a nonlinear recurrent neural network
(RNN) approach, was used in [187] to predict thruster power consumption under
challenging sea states. The model utilizes real-time dynamic positioning (DP) load and
parametric weather data for comparison with three conventional forecasting methods.
Numerical analyses confirmed the superior accuracy of the proposed technique for
future DP load behavior prediction. A regional traffic forecasting approach based on a
multiple hexagon-based convolutional neural network (mh-CNN) was introduced in
[165]. This model incorporates both flow dynamics and atmospheric conditions and
was applied in the South Atlantic State region to predict traffic flow. It proved effective
for daily forecasts during normal conditions and hourly forecasts during hurricanes.

A deep reinforcement learning (DRL)-based model was proposed in [188] to
develop a cost-effective, zero-emission energy management system (EMS) for fully
electric ferry boats. The system integrates batteries and fuel cells for energy storage.
Loss of Load Expectation (LOLE) was used as a reliability index in a multi-objective
EMS framework. Standards DNVGL-ST-0033 and DNVGL-ST-0373 were
considered to validate the commercial applicability of the model. Performance was
verified using a real-time Hardware-in-the-Loop (HIL) simulation. A synthetic
aperture radar (SAR)-based ship detection method was introduced in [189], featuring
anew 3-class SAR dataset for improved ship classification performance. The proposed
model, evaluated using this dataset, achieved the highest mean classification accuracy
of 96.67% and significantly reduced false positives compared to other existing
methods.

In [190], a deep feedforward neural network (DFN) was used to forecast ship
power by identifying data patterns. Ocean environmental parameters and ship
operational data were used as inputs, with ship power as the label. Several steps were
taken to improve prediction accuracy, including preprocessing environmental
parameters relative to ship velocity, adjusting the DFN structure based on input
characteristics, and analyzing forecast precision. K-means clustering was also used to
examine the effect of environmental and operational conditions, and model
performance was compared across various forecasting strategies. A deep neural
network (DNN)-based model named Ship Traffic Extraction Network (STENet) was
proposed in [166] for medium- and long-term ship traffic prediction in caution zones.
The system is guided by AIS sensor data and structured into modules, each with
specific responsibilities. Performance comparisons were made with four methods,
including VGGNet and support vector regression (SVR)-based techniques. The
proposed model outperformed others with a relative improvement of approximately
50.65% for medium-term predictions and 57.65% for long-term predictions. Table 8
gives an oversight in terms of deep learning algorithms used in each paper included in
this review.
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Table 8: Deep learning algorithms to improve ship power systems concerning

hardware
Hardware
Deep Learning Algorithm Used | component Objective/ Description
improved
Improvement in EMS of
Fuel cell, hybrid power system of

[172]

Artificial neural network (ANN)

photovoltaic array

vessel using renewable
resources of energy

Optimization of shipboard
microgrids for dynamic

System (ANFIS)

[12] RNN (recurring neural network) Diesel generators positioning in offshore
support vessels
Comparison of Neural Network Temperature Ammonia leakage
[173] | (NN) and Extreme Learning sensor Safety monitoring and safety device
Machine (ELM) device prototype is given
. Inland ship speed estimation
[155] Generalized Regression Neural z;o?rfglerzlm%m method proposed for
Network (GRNN) sogrce'sensors dynamic navigation
environment
Back propagation neural network
(BPNN), a radial basis function Modelpresented for Solar
[163] | neural network (RBFNN), an Solar power Power Output In_terval
. L system Prediction in Shipboard
extreme learning machine (ELM) Power Svstems
and an Elman neural network y
A neural network is
DC pulsed load proposed for Fault
[174] | Recurrent neural network (RNN) monitoring cable classification and detection
in dc pulsed load monitoring
Fault location and
e MVDC power classification model given
[164] | Avtificial neural network (ANN) system cable for MVDC shipboard power
systems
Fault detection and
[175] | Artificial neural network (ANN) MVDC power class,_lflcatlon model for
system cable medium voltage dc power
systems of ships
Model proposed for real-
GAN-RF (deep convolutional Gr?)nirﬁsti%ﬁ‘motors time fault detection and
[176] | neural networks +random forest prop " | localization of an all-electric
DC converters, :
) loads and buses shipboard MVVDC power
system
: ) Designing and implementing
[177] Adaptive Neuro-Fuzzy Inference Fuel cell an improved energy

management system for
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electric ship power system is
presented

Artificial neural network (ANN),
NL-PCR (Non-linear Principal

Ship performance

178] | Component Regression), Propeller shaft S A
el NL-PpLSR (Nong-linear anrtial P monitoring optimization
Least Squares Regression)
e Fuel consumption
[179] Erinrﬂrtllcpli’ﬂ Ir;r?gz;zslrggg\girlgn((Al\;lll_\g) Main engine forecasting model given, that
uses ship’s in-service data
: : - Research presented for
R 1B F | - .
[180] 0 ei?fxllirk ?SRISBFKInNC;'on neura Engines accurately predicting
resistance of a container ship
Comparison is performed on
. . various prediction models
MLP (Multi-Layer Perceptron) Propeller, Main -
[181] : for vessel propulsion power
(category of ANN) engine and most suitable one is
discussed in detail
Comparative analysis of the
[182] | Artificial neural network (ANN) Main diesel engine | fuel consumption forecast
models
Estimation improvement
[183] Multilayer Perceptron (MLP) Hull, Propeller, method for ship powering in
(category of ANN) Main engine preliminary ship design is
presented
SVMs, Random Forest Comparative study of
Regressors (RFRs), Extra : : several ML methods for
184 Main engine L .
[184] Trees Regressors (ETRs), ANNS, g predicting Fuel Oil
ensemble methods Consumption
Model proposed for
ANN and Multi-Regression . . estimation of ship’s power
[185] (MR) Main engine and fuel usage in different
operational states
An optimal power
[186] DQN (deep reinforcement Fuel cell and scheduling model is
learning) battery provided for all-electric
ships
Sdh'p thrusters, DP | prethod suggested for short-
[187] | RNN (recurring neural network) ( yrjte_amlp term DP load forecasting in
Egﬁ'tr'&?é?g) marine microgrids
convolutional neural network . . -
[165] | (mh-CNN) based on multiple Propeller, Main Tra_fn(_; flgw prediction
hexagon engine optimization
[188] DQN (deep reinforcement Fuel cell and An optimal power
learning) battery scheduling model is
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provided for all-electric
ships
. A Synthetic Aperture Radar
Long Short Term Memory Synthetic Aperture s
[189] Network (type of RNN) Radar (SAR) sgnsoroptlmlzatlon
method is proposed
Deep feed forward : - Ship power prediction
[190] neural network (DFN) Main engine optimization
Caution area traffic
[166] | Deep neural network AIS sensor prediction optimization

RULE BASED METHOD

Rule-based systems operate using “if-then" statements derived from a set of
predefined declarations. These rules dictate system behavior and are fundamental to
expert systems, which aim to replicate human decision-making [191], [192]. Widely
applied in Al, rule-based methods often use graph rewriting techniques. They offer
flexibility and adaptability across diverse domains [193], [194].

Applications of Rule-Based Methods

Rule-based systems are valued for their declarative nature, allowing focus on
what to solve rather than how. This makes them easier to prototype and modify
iteratively [196]. Their applications span software development [197], [198],
maintenance, and security [199]-[201], as well as scientific fields like chemistry,
biology, and social sciences [202]. In remote healthcare, rule-based techniques manage
big, heterogeneous patient data to improve Healthcare-as-a-Service (HaaS) [203]-
[205]. Agriculture also benefits from RB systems for crop, pest, and disease
management, irrigation control, and yield forecasting [221]-[229].

Marine applications include optimizing shipboard microgrids, integrating
renewables, and reducing emissions [213]-[217]. Rule-based learning has also been
used for estimating ship fuel consumption [214]. In traffic management, Al-based rule
systems apply traffic rules and evidential reasoning to handle congestion more
effectively [218]-[220]. In energy systems, they guide EMS development and power
distribution strategies in hybrid and microgrid setups [206]-[212].

Literature Review of Rule-Based Methods in Ship Microgrids

A rule-based, task-aware energy management scheme for marine power systems
is proposed in [120], aiming at the optimal dispatch of production and storage units to
meet task-dependent objectives and minimize fuel consumption. Initially, operational
tasks and classification society regulations are used to make rule-based decisions.
These decision variables are then utilized in the optimization phase to formulate and
update the functional constraints and objectives. The optimization problem is modeled
as a mixed-integer linear programming (MILP) problem, which is solved using an
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exhaustive search algorithm. The effectiveness of this dispatch strategy is
demonstrated through four case studies involving different ship configurations and
operational task cycles.

An energy management strategy based on rule-based control is presented in [128]
to compensate for power fluctuations caused by tidal motion. The hybrid energy
storage model incorporates a vanadium redox flow battery (VRB), which mitigates
low-frequency oscillating power due to tides and compensates for power discrepancies
between grid commands and grid-connected energy sources. A 3 MW vessel power
system simulation, incorporating real ship current-velocity data, is developed to
validate the proposed strategy, demonstrating improved system reliability.

In [121], a DC hybrid power system is modeled using the bond graph technique.
Key system components are individually modeled and integrated with varying levels
of dynamic accuracy. The system is simulated using a rule-based EMS to investigate
load-sharing schemes and system robustness under diverse operational scenarios.
Simulation results are validated through experiments conducted on a full-scale DC
hybrid laboratory testbed, confirming the model's capability to represent real system
behavior accurately.

A fuzzy rule-based (FRB) scheme is proposed in [213] within a game-theoretic
optimization framework to minimize greenhouse gas (GHG) emissions in marine
systems. This approach employs fuzzy IF-THEN rules to manage uncertainty in the
optimization environment. Sensitivity analyses conducted on a numerical case study
reveal that, despite increased emission-related costs, the model enhances overall cost
efficiency for the involved companies.

In [214], the authors analyze the integration of a hybrid power system (HPS) with
DC distribution and a battery energy storage system (BESS) in short-distance cargo
vessels, replacing the conventional AC system. Two optimization strategies are
compared: a traditional rule-based (RB) control method and a meta-heuristic Grey
Wolf Optimization (GWO) technique. Simulation results indicate that the HPS
achieves 2.91% and 7.48% reductions in fuel consumption using the RB and GWO
schemes, respectively. The study concludes that HPS combined with advanced meta-
heuristic control provides better emission reduction and fuel efficiency, with diesel
generators operating at higher efficiency. Table 9 provides a comparative overview of
the discussed studies employing rule-based approaches in shipboard microgrids.

Table 9: Overview of rule based ship energy systems with respect to hardware

Algorithm Used !—|ardware component Objective/ Description
improved
[120] Exhaustive Diesel-electric engines, Task-aware EMS for ship power
search algorithm | Main engines, energy systems is presented
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storage systems,
propellers, generators

Fuzzy logic
[128] | control
algorithm

Vanadium redox flow
battery (VRB), energy
storage systems

An energy management control
strategy is proposed that is based on
different rules for compensating the
fluctuating power caused due to tidal
motion

Exact control
[121] | algorithm not

Generator Set, Propulsion
Unit, Propulsion Unit,
Current Converters,

A rule-based EMS is proposed that
simulates the entire system and
investigates the system stability and

known Circuit Breakers. DC bus load sharing strategies in several
' operating conditions
Fuzzy logic -
An approach is presented to reduce
[213] ;?gng:zlhm Generator GHG emissions optimally

Meta-heuristic
[214] | optimization
algorithm

Diesel engine generator,
battery, inverter, DC-DC
converter, Rectifier,
propeller

Hybrid systems power management
optimization in electric ferries

SIMULATION AND HARDWARE PLATFORMS

Most machine learning models developed for maritime microgrids utilize
MATLAB as the primary simulation environment. For solving optimization problems,
various algorithms are implemented using the General Algebraic Modeling System
(GAMS), while BARON (Branch-And-Reduce Optimization Navigator) solvers are
employed to enhance GAMS’s high-level modeling capabilities for efficiently solving
objective functions [172], [29]. Visual Studio is also used in certain systems for
monitoring purposes [173].

In marine vessel direct current (MVDC) shipboard power systems, real-time fault
simulations are conducted using digital simulators, with initial data analysis frequently
performed in MATLAB [175]. Python is another widely adopted programming
environment due to its flexibility and extensive library support, making it suitable for
developing and simulating machine learning-based marine power systems [119],
[139], [130].

Various real-time simulation tools are also employed. For instance, an MVDC
power system model has been developed using the AppSIM Real-Time Simulator to
replicate fault scenarios, with NA-MEMD applied for preprocessing fault voltage data.
In another case, the Real Time Digital Simulator (RTDS) is used to execute high-
fidelity simulations of marine power systems and generate datasets for fault detection
and classification. The RTDS platform provides high-speed, real-time performance
suitable for general power system analysis and control system validation [230], [231].
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RTDS utilizes advanced hardware with parallel processing capabilities and is
operated via a graphical interface called RSCAD. RSCAD acts as the primary tool for
interacting with RTDS hardware, allowing users to build, simulate, and analyze
interactive models. It also facilitates efficient data collection for post-processing [133].
Owing to its near real-time performance and broad 1/0 channel support, RTDS has
gained widespread adoption in various power system applications [232]. It is
particularly effective for system design, testing, and algorithm verification in safety-
critical and control-sensitive environments [136].

PSCAD is another widely used software for simulating MVDC shipboard power
system models [155]. Real-time fault detection algorithms are implemented in
PSCAD/EMTDC to evaluate electrical behavior under transient conditions [176].
Moreover, numerous rule-based systems applied in marine microgrids are simulated
using MATLAB/Simulink for power optimization and energy management [128],
[214]. Finally, several studies have adopted Hardware-in-the-Loop (HIL) frameworks
based on real-time simulation to validate the performance and effectiveness of
proposed optimization strategies for shipboard microgrids [48], [117].

CASE STUDIES AND PERFORMANCE COMPARISON

Several studies have applied Al models to specific maritime case studies, such as
hybrid-electric ferries and cargo vessels. Key results from these studies are
summarized below:

A hybrid-electric ferry employing K-means clustering and linear programming
for EMS optimization achieved a 12-18% reduction in fuel consumption. LSTM-based
forecasting of propulsion load demonstrated 95% prediction accuracy, significantly
improving scheduling and generator loading. Rule-based control integrated with ANN-
based power prediction was used to prevent blackouts in naval shipboard systems,
ensuring 100% uptime in critical operations.

Table 10: Summarized performance metrics of different ai techniques applied in the
reviewed studies

Technique Application Area Accuracy/Benefit Notes

SVM Fault Diagnosis 93% Good generalization,
needs labeled data

LSTM Load Forecasting 95% Excellent for time-
series prediction

Rule-Based + ANN | Power Control Stable Output Best for deterministic
logic
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DISCUSSION

The integration of artificial intelligence (Al) into shipboard microgrid systems
marks a significant advancement in enhancing operational efficiency, environmental
compliance, and system resilience. Al-driven approaches—particularly machine
learning (ML) and deep learning (DL) techniques—have demonstrated considerable
potential in tasks such as predictive maintenance, fault detection, load forecasting, and
real-time power optimization. These applications directly contribute to reduced fuel
consumption and lower greenhouse gas emissions, aligning maritime operations with
international sustainability directives.

Despite these advantages, several challenges hinder the widespread adoption of
Al-based control in marine environments. One of the primary obstacles is the difficulty
of model generalization across diverse vessel types and operating conditions, largely
due to heterogeneous system architectures, variable data quality, and inconsistent
operational protocols. Additionally, the opaque nature of many deep learning models
poses concerns regarding explainability—an essential requirement for safety-critical
maritime systems. Other technical barriers include the need for real-time processing,
ensuring data privacy, and addressing cybersecurity threats.

To mitigate these issues, hybrid control frameworks that combine data-driven Al
models with deterministic, rule-based strategies offer a promising compromise,
balancing system adaptability with reliability and interpretability. The continued
evolution of such architectures, supported by standardized evaluation protocols and
deployment strategies, will be crucial for future development.

Conclusion

This paper presented a comprehensive review of Al methodologies applied to
shipboard microgrid systems, with an emphasis on machine learning, deep learning,
and rule-based hybrid approaches. Among these, artificial neural networks (ANNS)
emerged as the most frequently utilized, alongside techniques such as k-means
clustering, support vector machines (SVMs), decision trees, regression models, and
fuzzy logic algorithms.The reviewed literature highlights the successful deployment
of these intelligent control techniques across diverse maritime applications, including
power and energy management, ship design optimization, radar control, fault and
anomaly detection, fuel consumption forecasting, and marine traffic regulation.
Notable improvements were observed in the efficiency and reliability of onboard
components such as propulsion systems, energy storage units, thrusters, converters,
generators, radars, and sensors. Simulation platforms such as MATLAB, Python,
PSCAD, Real-Time Digital Simulator (RTDS), and hardware-in-the-loop (HIL)
systems were commonly employed to evaluate model performance. Overall, the
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findings underscore that Al-enabled microgrid control strategies offer tangible benefits
interms of energy efficiency, emissions reduction, and operational cost minimization.

Recommendations and Future Work

The insights obtained through this review point to several promising avenues for future
research. First, there is significant potential for exploring deep reinforcement learning
(DRL) and federated learning approaches to enable more adaptive and decentralized
control in marine microgrids. These techniques could be especially valuable in
environments characterized by uncertainty, variability, and real-time constraints.
Second, the integration of robust cybersecurity mechanisms within Al-based control
frameworks remains underexplored. Future efforts should prioritize the development
of intelligent intrusion detection and cyber-resilient control systems to protect critical
shipboard infrastructure. Third, to ensure safe and explainable Al deployment in
maritime settings, greater emphasis should be placed on developing interpretable
models that comply with marine safety standards. Hybrid systems that integrate Al
with expert systems or rule-based logic may offer a pragmatic solution. Lastly, the
creation and public release of standardized, high-fidelity datasets reflecting various
operational profiles and vessel types would significantly advance research in this
domain. The establishment of benchmark protocols and unified testing frameworks
will also be instrumental in accelerating real-world implementation of Al-driven
marine microgrid technologies.
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