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Abstract 

Maritime transport contributes approximately 2.5% to global greenhouse gas (GHG) 

emissions and faces rising operational costs due to increasing fuel prices. Optimizing 

shipboard energy systems has become essential to enhancing sustainability and 

efficiency. This paper presents a comprehensive review of artificial intelligence (AI), 

machine learning (ML), and deep learning (DL) methods applied to the optimization 

and control of ship microgrids. It highlights the architectures, challenges, and benefits 

of integrating AI into marine energy systems. A comparative analysis of AI-driven 

schemes for energy efficiency, fault diagnosis, and emission reduction is presented. 

The findings underline the transformative potential of AI-based control systems in 

enabling intelligent, adaptive, and environmentally compliant marine operations. 

Keywords: Ship Microgrid, Artificial Intelligence, Machine Learning, Deep Learning, 

Renewable Energy, Energy Storage Systems 

Introduction 

Although Earth is around 4.54 billion years old, humans, who make up just 0.01% 

of its life forms have drastically reshaped it in a very short time. Particularly over the 

last 50 years, human activity has led to the loss of 83% of wild mammals and nearly 

half of plant species, while consuming 30% of known natural resources, putting future 

ecological stability at risk. Driven by rapid population growth and environmental 

degradation, this impact has intensified. Atmospheric CO₂ levels, a major driver of 

climate change, have climbed from 323 ppm in the 1970s to over 411 ppm today. Since 

the 1970s, freshwater animal populations have fallen by 75% [1]. According to the UN 

Climate Report 2021, greenhouse gas levels hit record highs in 2020 and continued 

rising in 2021, with CO₂ reaching 413.2 ppm 149% above preindustrial levels [2].  

The maritime sector is under increasing pressure to minimize its environmental 

footprint and improve energy efficiency. According to the International Maritime 

Organization (IMO), global shipping emitted over 940 million tons of CO₂ annually, a 

 

* Corresponding Author: fahad.ali@umt.edu.pk 

mailto:fahad.ali@umt.edu.pk


Artificial Intelligence Techniques for Efficient Control P a g e | 37 

Journal of Computing and Artificial Intelligence Volume 2, Issue 2, 2024 

 

 

figure that could rise significantly by 2050 if unaddressed [10][11]. With fuel prices 

soaring and stricter emissions regulations being introduced, ship operators are 

compelled to seek advanced energy management strategies [3][12]. 

Recent advancements in electrification have introduced hybrid and all-electric 

ship designs. These rely heavily on microgrid technologies that integrate distributed 

energy resources (DERs), storage systems, and high-demand variable loads such as 

propulsion units [12][13]. However, managing these complex power systems requires 

intelligent, real-time control strategies. Traditional rule-based or PID control 

approaches lack the flexibility to adapt to non-linear and dynamic marine 

environments [14][15][16]. 

Artificial intelligence, including machine learning and deep learning methods, 

has emerged as a promising solution. These techniques offer predictive maintenance, 

dynamic power demand estimation, real-time decision-making, and improved load 

balancing, ultimately reducing fuel consumption and GHG emissions [17]. This paper 

surveys the current state-of-the-art in AI applications to ship microgrids, identifies key 

challenges, and outlines future research directions. 

Background and Related Work 

Microgrids are localized electrical power subsystems that integrate distributed 

energy resources (DERs), including both renewable and traditional sources such as 

photovoltaic (PV) systems, hydroelectric plants, wind turbines, gas turbines, internal 

combustion engines, and microturbines, along with a collection of loads [18], [19]. 

The U.S. Department of Energy defines a microgrid as “a group of interconnected 

loads and DERs with clearly defined electrical boundaries that operates as a single 

controllable entity with respect to the grid and can function in either grid-connected or 

islanded mode” [20], [21]. Other researchers describe microgrids as “a miniature 

power system comprising distributed energy resources, loads, and controllers” [22] 

or “a system of movable DERs and multiple loads within the existing power network, 

including solar PV, microturbines, wind turbines, and storage devices capable of 

operating in grid-connected or stand-alone mode” [23]. The following sections provide 

an overview of the different classifications of microgrids. 

Classification of Microgrids 

Microgrids are classified by topology into AC, DC, and hybrid AC/DC systems 

[24], [25], and by application into institutional, utility, industrial/commercial, 

transportation, and remote-area categories [26], [27], as shown in figure 1 [28]. AC 

microgrids dominate conventional power systems, while DC systems offer higher 

efficiency. Hybrid configurations combine both advantages for improved flexibility. 

This  dual  classification  framework  highlights  the  technology's  diverse 
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implementations across sectors. Microgrid architectures have evolved significantly to 

accommodate diverse energy resources and operational requirements. 

Figure 1: Microgrid classification by topology and application [28]. 

 

1. AC Microgrids 

AC microgrids remain the most prevalent configuration due to their 

compatibility with existing power infrastructure, utilizing power electronic converters 

(PECs) to integrate distributed energy resources (DERs) such as fuel cells, wind 

turbines, and solar PV systems [29]. These systems enhance power distribution 

efficiency in medium- and low-voltage networks while reducing transmission losses 

[28]. However, their operation requires precise synchronization of phase angle, 

frequency, and voltage with the main grid [30], and the multiple conversion stages 

inherent in AC systems can compromise reliability compared to DC alternatives as 

shown in figure 2 [31]. 

Figure 2: AC microgrid configuration with interconnected elements [31]. 

2. DC Microgrids 

The emergence of DC microgrids has introduced notable advantages, particularly 

in minimizing energy conversion stages and eliminating reactive power complications 
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[34,35]. These systems demonstrate particular efficacy in specialized applications 

including telecommunications, spacecraft, and data centers [38]. Despite their benefits, 

widespread adoption faces barriers such as substantial network restructuring costs, 

immature protection schemes, and lack of standardization [36,37]. Recent 

technological advancements in power electronics have begun addressing these 

challenges, making DC architectures increasingly viable for broader implementation. 

Fig. 3 [31] illustrates an example architecture of a DC microgrid. 

Figure 3: DC microgrid configuration with interconnected elements [31]. 
 

3. Hybrid AC/DC Microgrids 

Hybrid AC/DC microgrids represent an innovative synthesis of both paradigms, 

offering enhanced efficiency and reliability through optimized integration of AC and 

DC components [39,40]. These systems facilitate direct connection of diverse DERs 

and energy storage systems while minimizing power conversion losses [41,42]. The 

architecture's complexity, however, demands sophisticated control strategies to 

manage synchronization, reactive power flow, and converter interfacing [28]. Current 

research focuses on developing intelligent control algorithms to overcome these 

challenges and fully realize the potential of hybrid configurations. 

 

 

 

 

Figure 4: An architecture illustrating the structure of a hybrid AC/DC microgrid 

[31].. 
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The evolution of microgrid technologies reflects an ongoing effort to balance 

operational efficiency, reliability, and integration complexity. While AC systems 

maintain dominance in conventional applications, DC and hybrid architectures are 

gaining traction in specialized domains and future-looking energy systems. This 

progression underscores the importance of continued research in power electronics, 

control systems, and standardization to address existing limitations and unlock new 

applications for microgrid technologies. 

Basic Microgrids Architecture 

Microgrid architectures typically consist of distributed generation (DG) sources, 

distribution systems, PV storage schemes, and communication/control systems [43]. 

A generic microgrid architecture is shown in figure 5. DG technologies encompass 

both emerging solutions (wind turbines, micro hydropower, solar PV) and mature 

technologies (induction/synchronous generators) [44]. Combined heat and power 

(CHP) systems demonstrate particularly high efficiency (>80%) by utilizing waste heat 

[45]. 

Figure 5: A generic microgrid architecture [43] 
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PV systems, while environmentally favorable, face challenges including high 

installation costs and weather dependency [46], [47]. Distribution networks may 

employ DC, AC (50/60Hz), or high-frequency AC (HFAC) configurations, with DC 

systems gaining attention for their power quality advantages [48]. Reliable 

communication systems, including power-line carrier, fiber optics, and wireless 

protocols, are essential for microgrid operation [44]. Microgrids require robust control 

systems to ensure smooth transitions between grid-connected and islanded modes, 

especially due to the variability of renewable energy sources [49]. 

Control Methods of Microgrids 

Power flow must be ensured between the microgrid and main grid for seamless 

transitions, while the ◻G must remain operational post-islanding. Due to the stochastic 

nature of renewable sources, suitable AC and DC control strategies are essential [49]. 

1. AC Microgrid Control Methods: 

Various control techniques for AC microgrids are summarized below. 

a)  Control technique for Grid-connected mode: In grid-connected mode, 

distributed generation (DG) units are categorized into grid-feeding, grid-forming, 

and grid-supporting types [50]. Grid-forming units maintain voltage and 

frequency in islanded conditions and synchronize with the main grid when 

connected [51]. Grid-feeding units operate under central controllers to manage 

active and reactive power flow [52][51], while grid-supporting units utilize droop 

control to stabilize voltage and frequency [53]. 
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b)  Control technique in Islanded mode: In islanded mode, several control 

approaches are used. i) The Master-Slave method designates one DG unit as the 

master to provide voltage and frequency references, with others following and 

central control intervening during abnormalities [54]. ii) The Peer-to-Peer method 

allows all DGs to share control responsibilities equally using droop 

characteristics, ensuring system balance during load changes [31][55]. iii) 

Hierarchical control is structured in three layers: primary control uses droop 

techniques for power sharing; secondary control restores voltage and frequency 

deviations and handles grid synchronization; tertiary control optimizes economic 

dispatch and manages grid interactions [56]. iv) Additionally, the Multi-Agent 

System (MAS) enables each DG to function autonomously, making local 

decisions while coordinating with peers to achieve overall system objectives [57]. 

2. DC microgrid control methods 

DC microgrid control methods, generally simpler due to the absence of reactive 

power and frequency concerns, include several strategies. i) Droop control facilitates 

load sharing based on voltage-current characteristics and adapts according to the 

energy storage state [56][58][59]. ii) Hierarchical control mirrors the AC structure with 

inner voltage/current loops and outer virtual impedance loops for coordinated power 

regulation. iii) Hysteresis control provides fast response, commonly used in inverters 

and PLCs, although it features variable switching frequencies [60]. iv) Voltage Mode 

Control uses a single-loop feedback system to regulate converter output and manage 

charging/discharging of energy storage systems. v) MPPT (Maximum Power Point 

Tracking) control is vital for optimizing power output from variable renewable sources 

like solar PV and wind, typically implemented at the local converter level [49]. 

Shipboard Micro Grids 

Shipboard microgrids share similarities with terrestrial systems but face unique 

challenges due to pulsed loads and strict power quality requirements [61]. Energy 

storage systems include batteries (notably Li-ion), supercapacitors, SMES, flywheels, 

and hybrid configurations, each offering distinct power/energy density tradeoffs [61]- 

[69]. Basic power system of a hybrid vessel is shown in figure 6 [62]. Table 1 shows 

the advantages and problems of each technology of energy storage. Hydrogen fuel cells 

present emission-free potential but require cost reductions [70], [71]. Power quality 

issues - including voltage sags, frequency variations, and harmonics - stem from high- 

power loads like propulsion systems and electronic weapons [61], [92]-[95]. 

Classification societies mandate strict voltage (±10%) and frequency (±5%) tolerances 

[91], necessitating advanced control solutions for naval applications [74]-[79]. 

Figure 6: Power system of a hybrid ship [62] 



Artificial Intelligence Techniques for Efficient Control P a g e | 43 

Journal of Computing and Artificial Intelligence Volume 2, Issue 2, 2024 

 

 

 

 

 

Table 1: Advantages and problems of multiple energy storage techniques [61] 
 

Storage Category Advantages Problems 

Battery 
Lesser upkeep, more energy 

density (for Li-ion) 

Quite less power density 

and life span 

Supercapacitors 
More life, rapid charging / 

discharging ability 

More per watt cost, less 

energy density 

Superconducting magnetic 

energy storage (SMES) 

High Storage Efficiency, fast 

response 

Expensive, cooling 

problems 

Flywheels 
Humid-opposing quality, More 

power density 

Less density of energy, 

mechanical problems 

Hybrid ESS 
Can utilize the conveniences of 

two or more categories 

Costly, need complicated 

control algorithms 

Hydrogen fuel cells 
No greenhouse gas emissions 

(GHG) 
High cost, drains quickly 
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Recent research highlights need for: standardized power quality metrics, 

improved ESS control algorithms, and real-time monitoring integration [97]. The 

transition toward all-electric ships further emphasizes requirements for robust 

hierarchical control architectures capable of managing diverse load time constants 

(1ms-500s) [76]-[78]. Continued development of hybrid AC/DC architectures and 

adaptive control strategies remains critical for advancing marine microgrid reliability 

and performance [24], [25], [96]. 

Marine vessels encompass diverse electrical loads such as propulsion systems, 

pulsed defense loads, hotel and bridge services, and HVAC equipment, all of which 

must be considered in the initial power system design to ensure operational reliability 

and power quality. Load profiles and total capacity requirements determine key 

specifications like cables and switchgear, with dynamic modeling approaches often 

used to assess performance under varying conditions [72]. For example, a typical ship 

may use two propulsion lines with engines, gearboxes, and propellers, while auxiliary 

systems powered by dedicated engines support lighting, ventilation, and passenger 

amenities. Heat demands are met through heat recovery systems and auxiliary boilers 

when necessary, especially in port or cold conditions [73]. High-power loads, 

particularly propulsion motors and pulsed military equipment like electromagnetic 

weapons, can significantly affect power quality [74], [75]. Time constants of these 

components, ranging from milliseconds to several seconds (as shown in Table 2), 

inform control strategies that adapt to each load’s dynamic response [76], [77], [78]. 

In all-electric vessels, the propulsion system’s dynamics heavily influence the 

microgrid’s stability, necessitating control schemes that prioritize critical loads and 

coordinate power delivery efficiently across variable time constants, especially in 

vessels equipped with advanced detection and pulsed power systems [61], [79].  

Table 2: TIME CONSTANTS FOR VARIOUS ELEMENTS IN A SHIP ELECTRICAL 

SYSTEM [76] [77] 
 

 

 

 

 

 

 
 

 

 

 

Component Time Constant 
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Vessel warmup time 

Power generator with Gas turbine 

Propulsion motor stator leakage 

Propulsion motor 

Pulse duration modulation 

DC to DC converters 

Motor service loads Test 

Time constant of propulsion motor rotor 

20 - 500 s 

 

5 - 10 s 

 

1 -10 ms 

 

1 - 5 s 

 

0.5 -2 ms 

 

100 - 500 ms 

 

0.5 - 1 s 

 
50 ms – 1 s 

 

According to IEC standard 61000-4-30, power quality in shipboard microgrids is 

assessed based on deviations from technical benchmarks, with common issues arising 

from voltage waveform disturbances due to cyclic and non-cyclic load transients [90], 

[61]. The major problems in power quality of marine microgrids are enlisted in Table 

3. Harmonics and frequency deviations primarily affecting AC systems are 

increasingly prevalent due to the rise in power-electronics-based loads and generators, 

while voltage deviations impact both AC and DC systems. As ships adopt “more- 

electric” architectures, maintaining power quality has become more complex, 

prompting classification societies to standardize acceptable limits to mitigate risks to 

vessel operation, cargo, and crew [91]. Voltage and frequency limits for marine AC 

systems are detailed in Table 4, ensuring equipment resilience during deviations [61]. 

To further enhance system reliability, energy storage systems (ESS) are employed to 

smooth transients and support real-time power balance, contributing to safer and more 

robust shipboard power networks [96]. Nonetheless, challenges persist, including 

outdated standards, limited modeling fidelity, and a lack of real-time monitoring. 

Proposed improvements include revising classification rules, updating evaluation 

methods, and enhancing system models to better reflect operational and environmental 

conditions [97]. 

According to IEC standard 61000-4-30, power quality in shipboard microgrids is 

assessed based on deviations from technical benchmarks, with common issues arising 

from voltage waveform disturbances due to cyclic and non-cyclic load transients [90], 

[61]. Harmonics and frequency deviations primarily affecting AC systems are 

increasingly prevalent due to the rise in power-electronics-based loads and generators, 

while voltage deviations impact both AC and DC systems. As ships adopt “more- 
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electric” architectures, maintaining power quality has become more complex, 

prompting classification societies to standardize acceptable limits to mitigate risks to 

vessel operation, cargo, and crew [91]. Voltage and frequency limits for marine AC 

systems are detailed in Table 4, ensuring equipment resilience during deviations [61]. 

Table 3: Power quality problems classification in ship microgrid. [61] 
 

Problem in Quality of 

Power 
Probable Reason(s) 

Voltage Sag/Dips 

Frequency Drop 

Voltage Variations (Flickers) 

Harmonics 

Voltage Swell 

Bow Thruster [92], Electronic Weapons for Rapid-Response 

[93] 

 
Switching of Larger Loads [94] 

Radar System [63] 

Loads and Generator being Power Electronically Interfaced 

[95] 

Radar System [63] 

Table 4: Acceptable voltage and frequency alterations in ac systems [61] 
 

 

 

Quantity within Operation 

Deviations 

Permanent 

 

(percent) 

Transient (Time for Recovery) 

 

(percent) 

Voltage +6 to +-10 +-20 (1.5 s) 

Frequency +-5 +-10 (5 s) 

The Continuous Need for Improvement 

To further enhance system reliability, energy storage systems (ESS) are 

employed to smooth transients and support real-time power balance, contributing to 

safer and more robust shipboard power networks [96]. Nonetheless, challenges persist, 

including outdated standards, limited modeling fidelity, and a lack of real-time 

monitoring. Proposed improvements include revising classification rules, updating 

evaluation methods, and enhancing system models to better reflect operational and 

environmental conditions as shown in Table 5 [97]. 



Artificial Intelligence Techniques for Efficient Control P a g e | 47 

Journal of Computing and Artificial Intelligence Volume 2, Issue 2, 2024 

 

 

Table 5: Improvements required in ship power systems [97] 

 

Problems Possible Improvement(s) 

Insufficient rules of ship classification, 

unclear definitions of basic quantities. 

Newer and clearer rules should be presented by 

ship classification societies 

Inappropriate standardized methods for 

power quality evaluation and signal 

processing tools 

Definition of up to date assessment methods and 

tools 

Inefficiencies in the shipboard power 

system 

Integration of real-time power quality monitoring 

capabilities into power management system 

(PMS) 

Faults in ship’s designing, trial and 

exploitation phases 

Suitably refined models of upcoming ship 

systems should be prepared 

Issues occurring in systems modeling of 

ship or development of assessment 

techniques 

Environmental states impact and system's 

real aspects should be considered 

 

Numerous studies have demonstrated the advantages of AI-based control in 

marine systems. Applications include optimal energy scheduling, fault detection, load 

forecasting, and adaptive control using neural networks. These studies have reported 

improvements in fuel economy, emission reduction, and fault resilience. However, 

challenges remain in generalization, explainability, and hardware integration. 

Artificial Intelligence Methods for Shipboard Microgrid Optimization 

Artificial Intelligence (AI) encompasses various subfields, including Machine 

Learning (ML), Deep Learning (DL), and Rule-Based Systems (RBS) [99]., each 

offering unique advantages for the optimization and control of shipboard microgrids. 

The choice of AI technique depends on the nature of the application, data availability, 

and required precision. 

A.Machine Learning Techniques 

Machine Learning (ML) enables computer systems to improve performance on 

specific tasks through data-driven experience. It involves designing algorithms that 

can learn from historical data and make predictions or decisions without being 
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explicitly programmed. For instance, a diagnostic ML system trained on medical 

records can enhance its accuracy in detecting cancer as it learns from more patient 

data. Applications of ML span diverse domains including robotics, intelligent personal 

assistants, pattern recognition, data mining, traffic prediction, healthcare diagnostics, 

cybersecurity, agriculture, and natural language processing [98]. 

Types of Machine Learning Algorithms 

1. Supervised Learning 

Supervised learning involves training algorithms on labeled datasets to predict 

outcomes or classify inputs. Figure 7 a) shows the basic workflow of the supervised 

learning models. Key algorithms include: 

Decision Trees: These are hierarchical models that recursively partition data based on 

feature values. They are interpretable and handle both numerical and categorical data 

well, but can be sensitive to overfitting and data variability [101], [102]. 

Naïve Bayes (NB): Based on Bayes’ theorem, NB classifiers assume feature 

independence and are particularly effective in text classification tasks. They are 

computationally efficient but may perform poorly when classes are highly imbalanced 

or dependent [102]. 

Support Vector Machines (SVMs): SVMs seek optimal hyperplanes for separating 

classes in high-dimensional space. They perform well with structured data but scale 

poorly with very large datasets and noisy features [103]. 

Regression Analysis: This technique models relationships between dependent and 

independent variables. Widely used for forecasting and trend analysis, its efficacy 

depends on correct model selection and sufficient data [102], [103]. 

Figure 7: Supervised learning and Unsupervised Learning workflow (a) Supervised 

learning workflow [101] ) 

 



Artificial Intelligence Techniques for Efficient Control P a g e | 49 

Journal of Computing and Artificial Intelligence Volume 2, Issue 2, 2024 

 

 

Figure 8: Supervised learning and Unsupervised Learning workflow (b) Unsupervised 

Learning workflow [103] 
 
 

 

 

 

 

2. Unsupervised Learning 

Unsupervised learning operates on unlabeled data, identifying intrinsic structures 

or patterns as shown in Figure 7 b). The two fundamental unsupervised learning 

algorithms are K-means clustering and Principal Component Analysis (PCA). 

K-Means Clustering: It partitions data into K predefined clusters by minimizing 

intra-cluster variance. While efficient, its performance depends heavily on the choice 

of K and cluster shapes [102], [103]. 

Principal Component Analysis (PCA): PCA reduces data dimensionality by 

transforming correlated variables into orthogonal components, aiding in visualization 

and preprocessing [101]. 

3. Semi-Supervised Learning 

Semi-supervised learning leverages a small amount of labeled data with a larger 

unlabeled dataset. It is effective when labeling is costly. K-Nearest Neighbors (KNN), 

a non-parametric method that assigns class labels based on proximity to labeled 

instances. Though simple and intuitive, its computational cost increases with dataset 

size and dimensionality [102]. 

4. Reinforcement Learning 
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Reinforcement learning models learn through interaction with the environment, 

using reward and penalty signals. These are well-suited for sequential decision-making 

tasks such as control systems and gaming applications [103]. 

5. Ensemble Learning 

Ensemble learning integrates multiple models to enhance accuracy and 

robustness. Random Forest (RF), an ensemble of decision trees built on random data 

subsets using bagging. RF improves generalization and reduces overfitting, making it 

effective for both classification and regression tasks [103]. 

Applications of AI Methods 

1. General Applications Across Domains 

Machine learning (ML) has found widespread application across multiple 

domains. In drug discovery, ML supports processes such as target validation, 

identification of prognostic biomarkers, and analysis of digital pathology records in 

clinical trials [109]. Since the 2010s, the emergence of advanced ML techniques has 

significantly enhanced intelligent fault diagnosis (IFD) by enabling end-to-end 

prognostic models that link real-time monitoring data to machine health states using 

deep learning approaches [110]. ML is also increasingly employed in risk assessment, 

offering data-driven enhancements to traditional methods, particularly as large 

volumes of socio-technical system data become available. This trend supports the real- 

time industrial adoption of ML for more accurate and timely decision-making [111]. 

In the domain of Customer Relationship Management (CRM), ML has transformed 

customer interaction strategies through predictive analytics. Techniques such as neural 

networks, decision trees, support vector machines (SVM), and logistic regression are 

commonly used to improve CRM efficiency and customer feedback analysis [112]. 

Agricultural technology has also benefited from ML, where integration with sensor 

data and high-performance computing has led to AI-enabled farm management 

systems, improving productivity and decision-making [113]. Within industrial 

environments, ML plays a critical role in evolving traditional manufacturing systems 

towards Industry 4.0. Applications span maintenance, quality control, production 

planning, and supply chain management, with quality management receiving the most 

attention due to its direct impact on profitability [114]. In structural design and 

performance assessment (SDPA), ML aids in structural condition monitoring, risk- 

informed decision-making, and performance forecasting by extracting patterns from 

complex, high-dimensional data. This is particularly important for aging infrastructure 

and modern construction systems requiring robust and scalable analytical frameworks 

[114]. 

2. Applications in Electric and Marine Systems 
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The integration of machine learning (ML) into electric and marine systems has 

emerged as a promising area of research and application. In the evolving landscape of 

smart grids, where Internet of Things (IoT)-enabled devices generate vast volumes of 

data, ML offers effective tools for data analysis and anomaly detection. These tools 

are essential for handling cyber threats and ensuring secure grid operation through both 

supervised and unsupervised learning methods as elaborated in Figure 8 [115]. The 

rise of AI 2.0, a data-driven phase of artificial intelligence, further enhances smart 

energy and electric power systems (Smart EEPS), particularly in Smart Grids (SG) and 

Energy Internet (EI), where ML is leveraged to make predictive decisions from 

historical and synthetic data [116]. 

Figure 9: Employing machine learning in smart grid security [115] 
 

 

 

In the marine sector, ML contributes to reducing greenhouse gas emissions and 

improving energy efficiency by optimizing shipboard electric power systems. 

Dynamic positioning systems (DPS), which help maintain vessel position in adverse 

sea conditions, depend on accurate power demand forecasting—an area where ML- 

based prediction models significantly enhance diesel generator (DG) and energy 

storage system (ESS) management [117], processing to improve marine energy 

systems in shown in Figure 9 [117]. 
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Figure 10: Basic modeling process of applying machine learning on ship data 

[117] 

 

 

Artificial neural networks (ANNs) and rule-based learning have also been used 

to optimize shipboard power performance [118]–[121]. Fuel consumption prediction 

is another critical application, where ML models based on real-time engine data offer 

accurate forecasting without the need for additional sensors, reducing operational costs 

and enhancing energy modeling [122]–[124]. A simple representation of machine 

learning based fuel consumption estimation model is presented in Figure 10. Predictive 

maintenance, driven by ML, allows early detection of potential faults, thereby 

improving reliability and reducing energy inefficiencies [125] 

Figure 11: Machine learning for estimation of Fuel consumption [124] 
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In terms of cybersecurity, ML aids in detecting false data injection attacks that 

can mislead energy management systems (EMS) and compromise grid operations 

[126]. Moreover, for naval and maritime security, ML-based surveillance and 

classification systems outperform traditional radar technologies by improving threat 

detection, vessel identification, and situational awareness [127], [128]. Smart 

surveillance systems are essential for securing coastal regions and harbors against 

unauthorized intrusions [129].Finally, ML supports collision risk prediction in marine 

traffic through the computation of the Collision Risk Index (CRI), enhancing 

navigational safety and decision-making efficiency as elaborated in Figure 11 [130].. 

Figure 12: Gray box model for ship power prediction [125] 

 

Choice of Learning Technique 

The selection of an appropriate learning technique—be it machine learning, deep 

learning, or rule-based algorithms—depends on the specific requirements and 

constraints of the system under consideration. Key factors influencing this decision 

include the type and structure of input data, the availability of labeled or unlabeled 

data, and the nature of the desired output. Among the various techniques, artificial 

neural networks (ANNs) have been identified as the most widely used in the modeling 

of shipboard power systems. However, a diverse set of algorithms, including 

subcategories of ANNs and other learning paradigms, are also employed depending on 

the application context and complexity. 

Data Preparation and Feature Selection 

Effective machine learning modeling requires meticulous data preparation and 

feature selection. When data is sourced from various case studies, it often contains 

redundant or irrelevant information that must be filtered out. Figure 13 illustrates a 

generic flowchart for ship load forecasting using ML, outlining the main steps in data 

preparation [163]. All data entries with invalid or unscalable values should be 

removed, as such data can distort distance-based computations crucial to many ML 

algorithms. Relevant data must be mapped to appropriate class labels according to the 

specific system under study, ensuring accurate classification during training. To avoid 
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temporal bias, data should be sorted by class and then randomized before dividing into 

training and testing sets. Datasets should be partitioned into mutually exclusive 

training and testing subsets of appropriate sizes to balance precision and training 

efficiency. Any data variation and justification for sample sizing should be reported in 

the results. Finalized data should be formatted and compiled into designated training 

and testing files that meet the simulation or algorithmic requirements. 

Figure 13: A generic flowchart for ship load forecasting using ML [163] 
 

 

 

Literature Review of Machine Learning-Based Marine Microgrids 

An optimized EMS for diesel-electric vessels is proposed in [132], employing 

unsupervised learning algorithms (k-means and k-medoids) to extract patterns from 

historical data, combined with mixed-integer linear programming (MILP) to minimize 

fuel consumption. The system integrates a predefined optimal ESS charging state as a 

reference for the PI controller. Evaluated on a hybrid-electric ferry operating cyclically 

in an urban environment, the system demonstrated accuracy ranging from 87% to 99%. 

A fault diagnosis method for MVDC marine power systems is presented in [119], 

using Noise-Assisted Multivariate Empirical Mode Decomposition (NA-MEMD) for 

signal decomposition and Multilevel Iterative LightGBM (MI-LightGBM) for 

classification. Intrinsic Mode Functions (IMFs) extracted from voltage signals are used 

to compute energy moments, forming the fault feature vector. Simulations conducted 

using AppSIM validated its high precision and engineering applicability. 
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In [133], several ML techniques including Bayesian networks, radial basis 

function networks, decision trees, support vector machines (SVMs), and nearest 

neighbor classifiers are compared for fault detection in shipboard electronic 

components. The study provides early-stage comparative insights into their 

effectiveness. 

The authors in [122] utilize ridge regression, LASSO, multiple linear regression, 

boosting, tree-based algorithms, and support vector regression to predict marine fuel 

consumption. K-fold cross-validation and error metrics such as MAE, RMSE, and 

R2R^2R2 were employed. Engine RPM, shaft indicators, and scavenged air 

parameters were identified as key features. Multiple linear and ridge regression models 

achieved the best performance with an MAE of 0.002, RMSE of 0.0001, and R2R^2R2 

of 99.9%. 

A study in [134] applies an online sequential extreme learning algorithm with an 

adaptive kernel to manage signal uncertainty in real-time ship power systems. Using 

data from two sea conditions, the method employs three adaptive factors to control 

kernel scaling, resulting in accurate real-time predictions. In [123], a genetic algorithm 

is used to optimize both model selection and hyperparameters for fuel consumption 

prediction using noisy sensor data from a Baltic Sea vessel. Implemented entirely with 

open-source Python tools, the model shows promise for onboard deployment. 

Reference [124] presents another ML-based fuel prediction model using multiple 

linear regression. Noon report data is split into training and testing sets, and the model's 

predictions are validated against actual data. In [135], ship speed is predicted using 

AIS and weather data from 76 vessels over one year. Results indicate the ML model's 

effectiveness in forecasting speed based on selected features. A fault identification 

method in [125] integrates Expected Behavior Models with Exponentially Weighted 

Moving Average (EWMA). Using polynomial ridge regression, it accurately predicts 

faults in exhaust gas and air pressure of the main engine, supporting preventive 

maintenance. An optimal shipboard PMS is proposed in [136], utilizing Naive Bayes 

classification to determine operational states based on real/reactive power and 

generator status. The OPF method quantifies load losses, and real-time training updates 

improve system adaptability. The scheme achieves 97.67% accuracy with a processing 

time of 25 ms. 

Reference [137] assesses ML for incident likelihood prediction during the US 

Atlantic hurricane season. Support Vector Machines yielded 95% recall and 92% 

accuracy, highlighting the potential for intelligent vessel routing and maritime risk 

assessment. A Bayesian ML approach in [138] is integrated with Axiomatic Design 

principles for sustainable ship propulsion system design. It enables probabilistic 

evaluation of design parameters and identification of hidden couplings in early design 

stages. An integrated monitoring methodology is proposed in [117], combining 
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Gaussian Mixture Models and PCA for fault detection. It uses long-term voyage data 

to train models, facilitating identification of common operating states and early-stage 

machinery failures. 

In [139], a reinforcement learning-based PMS uses Q-learning to minimize fuel 

consumption by modeling the ship's power network as a Markov Decision Process. 

Applied to cruise ship data from the Baltic Sea, the model achieves approximately 

0.9% fuel savings, equating to 32 tons annually. Reference [140] explores the 

feasibility of predictive fuel modeling using Azure ML Studio. 

The multiple linear regression model processes IoT ship data with an R2R^2R2 

value of 0.9707, validating its effectiveness for real-world applications. A hybrid 

voyage optimization model is presented in [141], combining semi-empirical methods 

and ML via XGBoost. It predicts additional resistance using metocean, ship profile, 

and motion data. Case studies across three ships show ML reducing discrepancy from 

over 40% to below 1%. Data gap analysis in [142] compares single ML models and 

meta-models using real ship operation data. Meta-models achieved <5% MAPE and 

RRMSE, offering accurate anomaly detection and condition monitoring. 

In [143], ML algorithms (SVM, MLP, GLM, RF) are evaluated for predicting 

LPG ship energy efficiency. Random Forest achieved the lowest RAE (2.304%) and 

RMSE (17.2632), demonstrating its superior regression performance. An intrusion 

detection system using image processing and SVM is proposed in [129], aimed at 

detecting unauthorized ships in dynamic coastal environments, enhancing maritime 

security. Reference [126] presents a defense mechanism against false data injection 

attacks (FDIA) in ship power systems. Using deep learning and importance indices, 

the model outperforms traditional techniques with 90% higher accuracy. 

Another IDS for the NAVFAC smart grid is introduced in [144], using a KNN- 

based classifier to detect web, DOS/DDOS, and port scan attacks. Optimizing the k- 

value improves response classification while minimizing SOC load. An intelligent 

video surveillance system (AIVS3) is proposed in [127] using computer vision and 

ML for shipboard security. It identifies, classifies, and tracks threats, triggering alerts 

to a man-in-the-loop (MITL) interface. 

In [130], ML is integrated with Dempster–Shafer (D-S) theory for Collision Risk 

Index (CRI) prediction. Gradient Boosting Regression enhances speed and accuracy. 

Simulations show the model’s compliance with COLREGs and high reliability. 

Bayesian Networks trained on AIS data are used in [145] for anomaly detection, 

combining static and dynamic models. The hybrid approach increases performance 

and interpretability. Sea Spotter, a third-generation naval IRST system in [146], 

integrates custom ML for target acquisition and tracking. The study discusses design 

constraints and implementation methodology, showing improved imaging and threat 
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recognition. Table 6 summarizes the reviewed works, categorizing them by algorithm 

type and marine system components involved in ML-based optimization. 

Table 6: Summary of machine learning algorithms applied to vessel energy systems 

and hardware platforms 
 

 

ML Algorithm Used 

Hardware 

component 
improved 

Objective/ 

Description 

 

[132] 

 

k-means or k-medoids 

Diesel engines 

and ESS 

(energy 

storage 
system) 

Optimizing the ESS 

of Hybrid-Electric 

ships containing 

Cyclic Operations 

 

[119] 

Noise-Assisted Multivariate Empirical 

Mode Decomposition (NA-MEMD) 
and Multilevel Iterative LightGBM 

(MI LightGBM) 

Medium- 

voltage DC 

(MVDC) 

power system 
cable 

Fault diagnosis of 

medium-voltage DC 
shipboard power 

system 

 

 

 

[133] 

 

Decision trees; radial basis function 

networks; Bayesian networks; nearest 
neighbor classifiers; and support vector 

machines 

 

 

MVDC power 

system cable 

Diagnosis and 

spotting of faults in 

marine power 

systems by 
automated 

monitoring of power 

electronic 
components 

 

 

 

 

[122] 

Multiple linear regression, Ridge & 

LASSO regression, Kernel Ridge 

regression, Bayesian Ridge regression, 

Support Vector regression, K-Nearest 
Neighbors, Multi-Layer Perceptron 

regression, Decision tree regression, 

Random Forest regression, Ada Boost 

regression, Gradient Boosting 

regression, Hist Gradient Boost 

regression 

 

 

 

 

Main engine 

 

 

Comparison of 
different machine 

learning algorithms 

to improve ship fuel 

usage 

 

[134] 

 

Adaptive kernel based online 

sequential extreme learning machine 

Thrusters, 

generators, 
Converters 

Model presented to 

provide accurate 

prediction of online 

shipboard electric 

power fluctuations 

[123] Auto machine learning (AML) Main engine 
Optimization of 
prediction of Ship 
Fuel Consumption 

[124] Multiple linear regression Main engine 
Optimized 

forecasting of Ship 
Fuel Consumption 
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[135] 

Decision Tree Regressor, Random 
Forest Regressor, Extra Trees 

Regressor, Gradient Boosting 

Regressor, Extreme Gradient Boosting 

Regressor 

 

 

Engines 

Comparison of 
multiple ML 

Approaches for 

prediction of ship 

speed 

 

 

 

[125] 

Optimal regression model 

(Multiple linear ridge regression, 

Ordinary Least Squares (OLS) single 
linear regression, multiple polynomial 

ridge regression. 

And OLS single polynomial 

regression) 

 

 

 

Main engine 

 

 

Fault detection in 

ship systems 

operations 

[136] Naive Bayes Network(NBN) 
MVAC power 

system cable 

Diagnosis Support 

of marine power 

systems controls 

 

[137] 

 

Support Vector Machines (SVM) 
Propeller, 

Main engine 

Monitoring approach 

for ship safety in 

extreme weather 
conditions 

 

 

[138] 

 

 

Bayesian Network Model 

Main 

propulsion 

engine, Main 
diesel engine, 

hull 

Theoretical design 

of a ship's traditional 

propulsion system is 
presented using 

sustainable 

engineering 
principles 

[117] 
Gaussians Mixture Model (GMM), 

EM (expectation–maximization) 
Algorithm 

Main engine 
Design approach of 

Ship Monitoring 
System is given 

 

[139] 

 

Reinforcement learning (RL) 
Main engine, 

power system 

Optimization of 

autonomous control 

of marine auxiliary 
power networks. 

ML 

Algorithm 

Used 

Hardware component improved 
Objective/ 

Description 

ML Algorithm 

Used 

 

[140] 
Multiple regression 

model (MLR) 

 

Main engine 

Model proposed for 

predictive modeling 

of vessel fuel 
consumption 

 

[141] 

 

XGBoost algorithm 
Propeller, 
Main engine 

Designing speed- 

power models for 
optimization of 
ship’s voyage 
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[142] 

Generalized linear model (GAM), 
gradient boosting regressor (GBR), and 

multivariate adaptive regression 

splines (MARS) 

Main engine, 
Navigation 

sensor 

Method proposed for 

detection of 
abnormal data 

among collected real 
time marine data. 

 

[143] 

Multilayer preceptor (MLP), 

Generalized linear model (GLM) 

regression, random forest (RF), 

support vector machine (SVM), 

Main 

propulsion 

engine, Main 

diesel engine 

Prediction of energy 

efficiency of 

seagoing vessels by 
applying different 
ML algorithms 

Table 7 provides an overview of the related literature in terms of components 

involved in the papers that used machine learning to avoid intrusions and faults in 

marine power systems. 

Table 7: Ml algorithms for ship power systems focused on intrusion and fault 

mitigation 
 

 
ML Algorithm Used 

Attack on/ 

Fault in? 
Objective/ Description 

[129] 
Support Vector Machines 

(SVM) 

Intrusion 

detection system 

Ship’s Intrusion Detection System 

is presented 

[126] 
Support Vector Machines 
(SVM) 

Power grid 
system 

Research presented for detecting 
fake data injection attack in smart 
ship power systems 

[144] 
K-Nearest Neighbors 

Machine Learning 
Smart grid 

Detection of cyberattack on a navy 

smart grid 

[127] 
Support vector machine 
(SVM), multi-class Naïve 
Bayes Classifier. 

Attack by 
terrorists and 
pirates 

Intelligent automated marine video 

surveillance system is given 

[130] 
Gradient boosting regression 

(GBR) 

Lessen risks of 

ship collision 

Ship collision risk estimation 

model is presented 

[145] Bayesian Networks 
Deviation from 

route 

Model for anomaly detection in 

ship tracks 

[146] 
Offline Supervised Learning 

model 

Target 

acquisition and 
tracking 

Infrared warning model for navy 

surface vessels is given 

 

DEEP LEARNING METHODS IN SHIP MICROGRIDS 

DL techniques, including Convolutional Neural Networks (CNNs) and Long 

Short-Term Memory (LSTM) networks, are highly effective in handling non-linear 

time-series data and dynamic system behavior. These methods excel in tasks such as 

propulsion system load forecasting and condition monitoring. Deep Learning (DL), a 

subdomain of Machine Learning (ML), is fundamentally built upon artificial neural 
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networks (ANNs) and surpasses conventional ML and shallow learning techniques in 

numerous complex applications [147]. With the advent of advanced learning 

algorithms and refined pre-processing techniques, deep neural network architectures 

have emerged as powerful tools for learning complex patterns, collectively known as 

Deep Learning [148], [149]. A hierarchical depiction of the relationship among ML, 

ANNs, and Deep Neural Networks is illustrated in Fig. 12 [148]. 

 

Figure 14: A generic flowchart for ship load forecasting using ML [163] 
 

Artificial Neural Networks are biologically inspired algorithms primarily used in 

supervised learning. Modeled after the brain's structure, they consist of interconnected 

units called neurons, mimicking the behavior of biological neurons—each composed 

of dendrites (input receivers), soma (processing unit), nucleus (central control), and 

axon (output transmitter). ANNs typically operate over three layers: input, hidden, and 

output. The network is trained through iterative adjustment of weights associated with 

interconnections, enabling parallel distributed processing. Various DL architectures 

have evolved from ANNs, including Extreme Learning Machines (ELM), Recurrent 

Neural Networks (RNN), and Deep Neural Networks (DNN). A schematic 

representation of a neural network’s operation is provided in Fig. 13 [101]. 
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Figure 14: Working of neural networks [101] 

Applications of Deep Learning Algorithms 
 

Deep neural networks (DNNs) have demonstrated significant capabilities across 

various domains. In computing, DNNs have been applied for bot detection on social 

platforms. A model combining Long Short-Term Memory (LSTM) and DNNs is 

proposed in [150] for accurate identification of bots on platforms like Facebook and 

Twitter. Similarly, [151] integrates Convolutional LSTM (CLSTM) with DNNs for 

robust anomaly detection in web traffic based on user activity and data transmission 

volumes. In the medical domain, DL models have shown efficacy from drug 

identification to disease diagnosis. In [152], a DNN employing Discrete Wavelet 

Transform (DWT) and Principal Component Analysis (PCA) is proposed for brain 

tumor classification using MRI data. Likewise, [153] uses deep convolutional 

networks for diagnosing dental issues, while [154] presents a CNN-based method for 

retinal alignment offering a cost-effective and non-invasive solution. 

Deep Learning Applications in Marine Microgrids 

Deep learning algorithms play a significant role in enhancing the performance of 

marine microgrids. Waterborne transportation, being a cost-effective mode of global 

trade, demands advanced systems for navigation, energy management, and vessel 

performance optimization [155]. Deep learning techniques have been extensively 

applied to shipboard power systems to improve their efficiency. For instance, power 

consumption forecasting using deep neural networks has facilitated economic dispatch 

and operational scheduling under sea disturbances by employing nonlinear regression- 

based models [12]. Hybrid-electric vessels (HEVs), which integrate internal 

combustion engines with energy storage systems (ESS), are gaining traction in 

maritime transport due to their potential to reduce fuel consumption and CO₂ emissions 

[156], [157], [20]. 

In alignment with the Paris Agreement under the United Nations Framework 

Convention, shipbuilders are increasingly focusing on reducing greenhouse gas (GHG) 
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emissions [158]. Electrification of ship systems is a key strategy in this regard. All- 

Electric Ships (AES) power both propulsion and auxiliary systems from a unified 

energy source, contributing to reduced GHG emissions and enhanced renewable 

energy integration [159]–[161]. Naval ships, in particular, benefit from these 

architectures due to their varied and mission-critical load demands, including sensors 

and weaponry. 

The full electrification of marine systems requires Integrated Power Systems 

(IPS), which often incorporate hybrid energy setups comprising diesel engines, 

batteries, fuel cells, supercapacitors, and renewable sources such as solar energy. 

These hybrid systems address challenges such as slow dynamic response of certain 

sources (e.g., fuel cells), resource intermittency (e.g., solar unavailability during 

nighttime), and the weight and cost constraints of energy storage devices. To manage 

these complexities, fuzzy logic controllers are implemented in real-time power 

management schemes to prevent issues like battery overcharging from regenerative 

braking [162]. Accurate forecasting of solar power is critical for shipboard PV 

systems, which face more variability than onshore installations due to weather changes 

and vessel motion. Deep learning-based hybrid models can provide interval forecasts 

for PV power output. An example of such a model is illustrated in Fig. 4.3 [163]. 

Ensuring a continuous power supply is vital for electric vessels operating under 

dynamic and hostile environmental conditions. Anomalies in the marine power system 

can disrupt power delivery and damage electrical equipment. Fast and reliable fault 

detection and isolation are crucial to prevent outages and maintain operational integrity 

[164]. Additionally, forecasting maritime traffic is essential for safe navigation and 

efficient management of maritime transport. Many existing models offer localized, 

short-term predictions. However, deep learning-based systems enable long-term traffic 

forecasting over large regions, which is vital for vessel traffic service (VTS) operations 

in congested harbor areas [165], [166]. 

Medium Voltage DC (MVDC)-based shipboard power systems can be considered 

as isolated microgrids, powered by distributed generators (DGs). While efficient, these 

systems are more vulnerable to faults, often causing high fault currents and posing 

severe safety threats. Fault diagnosis in MVDC systems is still in its infancy, with both 

conventional methods—such as directional protection, overcurrent protection 

(AC/DC), and current differential protection—and advanced techniques including 

wavelet transforms (WT) [169], short-time Fourier transform (STFT) [170], and 

artificial neural networks (ANNs) [114] being explored [167], [168]. False Data 

Injection Attacks (FDIA) also pose a serious risk to shipboard microgrids. These 

attacks compromise data integrity by altering state estimates, which can disrupt 

operations, lead to system failure, and potentially cause total blackouts. FDIA was first 

introduced by Yao Liu in [171]. 
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Literature Review of Deep Learning in Marine Microgrids 

An intelligent technique based on Artificial Neural Networks (ANNs) was 

introduced in [172] for controlling a ship's hybrid power system using past operational 

data. The proposed electric power system utilizes a fuel cell as the DC power source, 

with photovoltaic (PV) modules serving as the primary energy source during sufficient 

daylight conditions. Upon the absence of sunlight, the fuel cell is engaged to meet 

power demands. MATLAB simulations demonstrated the system’s ability to select the 

energy source and compute power output dynamically according to shipload 

requirements. 

In [12], a deep learning approach was developed for Dynamic Positioning (DP) 

ships to predict the power consumption of thrusters under varying sea conditions. 

Nonlinear regressive neural networks were used to forecast the power demands of 

generators during disturbances. The predicted data was integrated with Power 

Management Systems (PMS) and Dynamic Positioning Systems (DPS), improving 

engine performance and reducing both fuel consumption and greenhouse gas (GHG) 

emissions. Mixed-Integer Nonlinear Programming (MINLP) was conducted using 

GAMS, with simulations executed in MATLAB. 

A control system proposed in [173] applied both ANN and Extreme Learning 

Machine (ELM) methods to optimize a marine loading arm plant. Temperature and 

gas sensors (DHT11 and MQ for ammonia detection) were employed to regulate a 

safety device. Simulation results revealed that ELM outperformed ANN, achieving an 

error rate of less than 0.4%, thereby making it viable for safety enhancement and 

ammonia gas leakage prevention. 

A method for modeling inland ship velocity under dynamic environmental 

conditions was proposed in [155]. The study employed Density-Based Spatial 

Clustering of Applications with Noise (DBSCAN) to categorize environmental data, 

including water levels and wind parameters. A Generalized Regression Neural 

Network (GRNN) was then used to predict vessel speed. A case study on a ship 

operating on the Yangtze River confirmed the model's accuracy in estimating ship 

velocity. In [163], a hybrid ensemble method for interval prediction of onboard solar 

power was proposed based on a stochastic motion ship model. Machine learning 

algorithms such as Back Propagation Neural Network (BPNN), Elman Neural 

Network, Radial Basis Function Neural Network (RBFNN), and ELM were combined 

with Particle Swarm Optimization (PSO). The model was tested on a solar-equipped 

oil tanker traveling from Dalian (China) to Aden (Yemen). The results validated the 

model's reliability in predicting solar energy output under navigation constraints.  

A classification model using Long Short-Term Memory (LSTM) auto-encoders 

and short-time Fourier transform (STFT) was developed in [174] for fault detection in 
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DC pulsed load monitoring. The system reconstructed pulse signals to detect 

abnormalities based on residual differences between actual and predicted signals. 

Trained on 20 coil gun pulses sampled at 10 kHz, the model achieved 97.88% 

classification accuracy. 

An ANN-based technique for fault categorization and localization in shipboard 

MVDC systems was proposed in [164]. It used transient waveform data of voltage and 

current to train and validate multiple ANN modules. The method was simulated in 

PSCAD on a medium-voltage DC cable system. Results showed effective fault 

classification and location detection, except in 30 cases of positive rail-to-ground 

faults. Another fault detection and classification method based on ANN was presented 

in [175], utilizing Wavelet Transform Multiresolution Analysis (WT-MRA) and 

Parseval’s theorem for feature extraction. Daubechies 10 (db10) was selected as the 

mother wavelet with a decomposition level of 9. The model demonstrated the ability 

to classify various fault types, including DC/AC bus faults and ground faults, when 

simulated in MATLAB. 

A Generative Adversarial Network (GAN)-based method was proposed in [176] 

for fault detection and localization under imbalanced datasets. Synthetic training 

samples were generated using a deep convolutional GAN, and feature extraction 

techniques were used to minimize input dimensionality. A Random Forest (RF) 

classifier trained on both real and synthetic data achieved a classification accuracy of 

99%, using real-time simulation data from a PSCAD/EMTDC power system model. 

An intelligent Energy Management System (EMS) was introduced in [177] for marine 

vessels, developed using an Adaptive Neuro-Fuzzy Inference System (ANFIS). The 

power source included a Proton Exchange Membrane Fuel Cell (PEMFC) and a battery 

bank as energy storage. Simulations were conducted in MATLAB using hardware-in- 

the-loop testing, demonstrating the system's capability in reducing GHG emissions and 

enhancing power system reliability. 

In [178], three machine learning models—Nonlinear Partial Least Squares 

Regression (NL-PLSR), Nonlinear Principal Component Regression (NL-PCR), and 

probabilistic ANN—were employed to analyze hydrodynamic performance using 

onboard data from two sister ships. These models were used to detect performance 

trends influenced by propeller and hull cleaning, with the probabilistic ANN yielding 

the highest accuracy. A fuel consumption forecasting model for a 13,000 TEU 

container ship was presented in [179], integrating operational data and domain 

knowledge to select relevant input features. Both Multiple Linear Regression (MLR) 

and ANN were applied, with ANN achieving prediction accuracies ranging from 

0.9709 to 0.9936. Sensitivity analysis determined an optimal draught of 14.79 m under 

standard conditions, closely aligning with the ship’s design draught. In [180], a Radial 

Basis Function Neural Network (RBFNN) model was used to estimate resistance for a 
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13,500 TEU vessel at various drafts. Ship features were normalized, and prediction 

performance was compared across five ML algorithms, including SVM, BPNN, 

Random Forest, and XGBoost. The RBFNN exhibited superior predictive accuracy for 

the total resistance coefficient. 

A large-scale integrated dataset comprising Automatic Identification System 

(AIS) data and European Centre for Medium-Range Weather Forecasts (ECMWF) 

data was used in [181] to train ML models for vessel propulsion power forecasting. 

The dataset, processed on a Spark cluster, included records from 228 vessels over 50 

months. Performance across different deep learning models was compared, identifying 

the best-performing architectures for this task. A fuel oil consumption prediction 

system based on a backpropagation ANN algorithm was introduced in [182], trained 

using real operational data from a Vietnamese bulk carrier. The input was derived from 

two years of noon-log reports. The probabilistic system demonstrated its potential to 

enhance EMS efficiency on ships. A ship powering estimation model was proposed in 

[183] for use during preliminary ship design, integrating graph theory with a 

Multilayer Perceptron (MLP) neural network. Following hull parameter analysis, the 

ML model exhibited an average absolute error of 23%, compared to 17.5% for an 

analytical model, indicating its applicability in early design stages. 

A study [184] presented a comparative analysis of multiple regression data-driven 

algorithms to predict fuel oil consumption by ship main engines, based on two different 

shipboard data acquisition schemes: noon reports and Automated Data Logging and 

Monitoring (ADLM) systems. Several regression algorithms were evaluated, including 

Extra Trees Regressors (ETRs), Artificial Neural Networks (ANNs), Random Forest 

Regressors (RFRs), Support Vector Machines (SVMs), and ensemble methods. 

Among these, ETRs and RFRs yielded the highest accuracy for both acquisition 

schemes, with the ADLM system improving prediction accuracy by up to 7% and 

reducing data collection time by 90%. These approaches demonstrated the ability to 

forecast fuel consumption accurately across various sailing conditions. 

An ANN and Multi-Regression (MR) based model was proposed in [185] for the 

estimation of ship power and fuel consumption. The model is designed for real-time 

operational environments and is developed using intensive datasets rather than 

traditional noon reports. This model was further applied in a Just-In-Time (JIT) voyage 

scenario to predict potential fuel savings. In [186], machine learning techniques were 

employed to estimate ship power performance using functional data to build regression 

models. These models integrate domain knowledge based on physical laws to 

minimize overfitting during regression. Environmental uncertainty was also 

considered to assess prediction reliability. The developed models can predict ship 

speed and engine power under various operational and meteorological conditions.  
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The Levenberg–Marquardt algorithm, a nonlinear recurrent neural network 

(RNN) approach, was used in [187] to predict thruster power consumption under 

challenging sea states. The model utilizes real-time dynamic positioning (DP) load and 

parametric weather data for comparison with three conventional forecasting methods. 

Numerical analyses confirmed the superior accuracy of the proposed technique for 

future DP load behavior prediction. A regional traffic forecasting approach based on a 

multiple hexagon-based convolutional neural network (mh-CNN) was introduced in 

[165]. This model incorporates both flow dynamics and atmospheric conditions and 

was applied in the South Atlantic State region to predict traffic flow. It proved effective 

for daily forecasts during normal conditions and hourly forecasts during hurricanes. 

A deep reinforcement learning (DRL)-based model was proposed in [188] to 

develop a cost-effective, zero-emission energy management system (EMS) for fully 

electric ferry boats. The system integrates batteries and fuel cells for energy storage. 

Loss of Load Expectation (LOLE) was used as a reliability index in a multi-objective 

EMS framework. Standards DNVGL-ST-0033 and DNVGL-ST-0373 were 

considered to validate the commercial applicability of the model. Performance was 

verified using a real-time Hardware-in-the-Loop (HIL) simulation. A synthetic 

aperture radar (SAR)-based ship detection method was introduced in [189], featuring 

a new 3-class SAR dataset for improved ship classification performance. The proposed 

model, evaluated using this dataset, achieved the highest mean classification accuracy 

of 96.67% and significantly reduced false positives compared to other existing 

methods. 

In [190], a deep feedforward neural network (DFN) was used to forecast ship 

power by identifying data patterns. Ocean environmental parameters and ship 

operational data were used as inputs, with ship power as the label. Several steps were 

taken to improve prediction accuracy, including preprocessing environmental 

parameters relative to ship velocity, adjusting the DFN structure based on input 

characteristics, and analyzing forecast precision. K-means clustering was also used to 

examine the effect of environmental and operational conditions, and model 

performance was compared across various forecasting strategies. A deep neural 

network (DNN)-based model named Ship Traffic Extraction Network (STENet) was 

proposed in [166] for medium- and long-term ship traffic prediction in caution zones. 

The system is guided by AIS sensor data and structured into modules, each with 

specific responsibilities. Performance comparisons were made with four methods, 

including VGGNet and support vector regression (SVR)-based techniques. The 

proposed model outperformed others with a relative improvement of approximately 

50.65% for medium-term predictions and 57.65% for long-term predictions. Table 8 

gives an oversight in terms of deep learning algorithms used in each paper included in 

this review. 
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Table 8: Deep learning algorithms to improve ship power systems concerning 

hardware 
 

 

Deep Learning Algorithm Used 

Hardware 

component 

improved 

Objective/ Description 

 

[172] 

 

Artificial neural network (ANN) 
Fuel cell, 

photovoltaic array 

Improvement in EMS of 

hybrid power system of 

vessel using renewable 
resources of energy 

 

[12] 

 

RNN (recurring neural network) 

 

Diesel generators 

Optimization of shipboard 

microgrids for dynamic 
positioning in offshore 
support vessels 

[173] 
Comparison of Neural Network 

(NN) and Extreme Learning 
Machine (ELM) 

Temperature 

sensor Safety 
device 

Ammonia leakage 

monitoring and safety device 
prototype is given 

 

[155] 
Generalized Regression Neural 

Network (GRNN) 

Propeller, Main 

engine, multi- 

source sensors 

Inland ship speed estimation 

method proposed for 
dynamic navigation 
environment 

 

[163] 

Back propagation neural network 

(BPNN), a radial basis function 
neural network (RBFNN), an 

extreme learning machine (ELM) 
and an Elman neural network 

 

Solar power 
system 

Model presented for Solar 

Power Output Interval 
Prediction in Shipboard 

Power Systems 

 

[174] 

 

Recurrent neural network (RNN) 
DC pulsed load 

monitoring cable 

A neural network is 

proposed for Fault 

classification and detection 
in dc pulsed load monitoring 

 

[164] 

 

Artificial neural network (ANN) 
MVDC power 
system cable 

Fault location and 

classification model given 
for MVDC shipboard power 

systems 

 

[175] 

 

Artificial neural network (ANN) 
MVDC power 

system cable 

Fault detection and 

classification model for 
medium voltage dc power 
systems of ships 

 
[176] 

GAN-RF (deep convolutional 
neural networks + random forest 

) 

Generators, 

propulsion motors, 

DC converters, 

loads and buses 

Model proposed for real- 
time fault detection and 

localization of an all-electric 

shipboard MVDC power 
system 

[177] 
Adaptive Neuro-Fuzzy Inference 

System (ANFIS) 
Fuel cell 

Designing and implementing 
an improved energy 

management system for 
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   electric ship power system is 
presented 

 

[178] 

Artificial neural network (ANN), 

NL-PCR (Non-linear Principal 

Component Regression), 

NL-PLSR (Non-linear Partial 
Least Squares Regression) 

 

Propeller shaft 

 

Ship performance 

monitoring optimization 

[179] 
artificial neural network (ANN), 
multiple linear regression (MLR) 

Main engine 
Fuel consumption 

forecasting model given, that 
uses ship’s in-service data 

[180] 
Radial Basis Function neural 

network (RBFNN) 
Engines 

Research presented for 

accurately predicting 
resistance of a container ship 

 

[181] 

 

MLP (Multi-Layer Perceptron) 

(category of ANN) 

 

Propeller, Main 

engine 

Comparison is performed on 

various prediction models 

for vessel propulsion power 

and most suitable one is 

discussed in detail 

[182] Artificial neural network (ANN) Main diesel engine 
Comparative analysis of the 
fuel consumption forecast 
models 

 
[183] 

Multilayer Perceptron (MLP) 
(category of ANN) 

Hull, Propeller, 
Main engine 

Estimation improvement 

method for ship powering in 
preliminary ship design is 
presented 

 
[184] 

SVMs, Random Forest 

Regressors (RFRs), Extra 

Trees Regressors (ETRs), ANNs, 
ensemble methods 

 
Main engine 

Comparative study of 

several ML methods for 

predicting Fuel Oil 
Consumption 

 

[185] 
ANN and Multi-Regression 

(MR) 

 

Main engine 

Model proposed for 
estimation of ship’s power 

and fuel usage in different 

operational states 

 

[186] 
DQN (deep reinforcement 

learning) 

Fuel cell and 

battery 

An optimal power 

scheduling model is 

provided for all-electric 
ships 

 

[187] 

 

RNN (recurring neural network) 

Ship thrusters, DP 

(dynamic 

positioning) 
controller 

Method suggested for short- 

term DP load forecasting in 

marine microgrids 

[165] 
convolutional neural network 

(mh-CNN) based on multiple 
hexagon 

Propeller, Main 

engine 

Traffic flow prediction 

optimization 

[188] 
DQN (deep reinforcement 
learning) 

Fuel cell and 
battery 

An optimal power 
scheduling model is 



Artificial Intelligence Techniques for Efficient Control P a g e | 69 

Journal of Computing and Artificial Intelligence Volume 2, Issue 2, 2024 

 

 

 

   provided for all-electric 
ships 

[189] 
Long Short Term Memory 

Network (type of RNN) 

Synthetic Aperture 

Radar 

A Synthetic Aperture Radar 
(SAR) sensor optimization 

method is proposed 

[190] 
Deep feed forward 
neural network (DFN) 

Main engine 
Ship power prediction 
optimization 

[166] Deep neural network AIS sensor 
Caution area traffic 
prediction optimization 

RULE BASED METHOD 

Rule-based systems operate using "if-then" statements derived from a set of 

predefined declarations. These rules dictate system behavior and are fundamental to 

expert systems, which aim to replicate human decision-making [191], [192]. Widely 

applied in AI, rule-based methods often use graph rewriting techniques. They offer 

flexibility and adaptability across diverse domains [193], [194]. 

Applications of Rule-Based Methods 

Rule-based systems are valued for their declarative nature, allowing focus on 

what to solve rather than how. This makes them easier to prototype and modify 

iteratively [196]. Their applications span software development [197], [198], 

maintenance, and security [199]–[201], as well as scientific fields like chemistry, 

biology, and social sciences [202]. In remote healthcare, rule-based techniques manage 

big, heterogeneous patient data to improve Healthcare-as-a-Service (HaaS) [203]– 

[205]. Agriculture also benefits from RB systems for crop, pest, and disease 

management, irrigation control, and yield forecasting [221]–[229]. 

Marine applications include optimizing shipboard microgrids, integrating 

renewables, and reducing emissions [213]–[217]. Rule-based learning has also been 

used for estimating ship fuel consumption [214]. In traffic management, AI-based rule 

systems apply traffic rules and evidential reasoning to handle congestion more 

effectively [218]–[220]. In energy systems, they guide EMS development and power 

distribution strategies in hybrid and microgrid setups [206]–[212]. 

Literature Review of Rule-Based Methods in Ship Microgrids 

A rule-based, task-aware energy management scheme for marine power systems 

is proposed in [120], aiming at the optimal dispatch of production and storage units to 

meet task-dependent objectives and minimize fuel consumption. Initially, operational 

tasks and classification society regulations are used to make rule-based decisions. 

These decision variables are then utilized in the optimization phase to formulate and 

update the functional constraints and objectives. The optimization problem is modeled 

as a mixed-integer linear programming (MILP) problem, which is solved using an 
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exhaustive search algorithm. The effectiveness of this dispatch strategy is 

demonstrated through four case studies involving different ship configurations and 

operational task cycles. 

An energy management strategy based on rule-based control is presented in [128] 

to compensate for power fluctuations caused by tidal motion. The hybrid energy 

storage model incorporates a vanadium redox flow battery (VRB), which mitigates 

low-frequency oscillating power due to tides and compensates for power discrepancies 

between grid commands and grid-connected energy sources. A 3 MW vessel power 

system simulation, incorporating real ship current-velocity data, is developed to 

validate the proposed strategy, demonstrating improved system reliability. 

In [121], a DC hybrid power system is modeled using the bond graph technique. 

Key system components are individually modeled and integrated with varying levels 

of dynamic accuracy. The system is simulated using a rule-based EMS to investigate 

load-sharing schemes and system robustness under diverse operational scenarios. 

Simulation results are validated through experiments conducted on a full-scale DC 

hybrid laboratory testbed, confirming the model's capability to represent real system 

behavior accurately. 

A fuzzy rule-based (FRB) scheme is proposed in [213] within a game-theoretic 

optimization framework to minimize greenhouse gas (GHG) emissions in marine 

systems. This approach employs fuzzy IF–THEN rules to manage uncertainty in the 

optimization environment. Sensitivity analyses conducted on a numerical case study 

reveal that, despite increased emission-related costs, the model enhances overall cost 

efficiency for the involved companies. 

In [214], the authors analyze the integration of a hybrid power system (HPS) with 

DC distribution and a battery energy storage system (BESS) in short-distance cargo 

vessels, replacing the conventional AC system. Two optimization strategies are 

compared: a traditional rule-based (RB) control method and a meta-heuristic Grey 

Wolf Optimization (GWO) technique. Simulation results indicate that the HPS 

achieves 2.91% and 7.48% reductions in fuel consumption using the RB and GWO 

schemes, respectively. The study concludes that HPS combined with advanced meta- 

heuristic control provides better emission reduction and fuel efficiency, with diesel 

generators operating at higher efficiency. Table 9 provides a comparative overview of 

the discussed studies employing rule-based approaches in shipboard microgrids. 

Table 9: Overview of rule based ship energy systems with respect to hardware 
 

 
Algorithm Used 

Hardware component 

improved 
Objective/ Description 

[120] 
Exhaustive 
search algorithm 

Diesel-electric engines, 
Main engines, energy 

Task-aware EMS for ship power 
systems is presented 
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  storage systems, 
propellers, generators 

 

 

[128] 

Fuzzy logic 

control 

algorithm 

Vanadium redox flow 

battery (VRB), energy 

storage systems 

An energy management control 

strategy is proposed that is based on 

different rules for compensating the 

fluctuating power caused due to tidal 
motion 

 

[121] 

Exact control 

algorithm not 
known 

Generator Set, Propulsion 
Unit, Propulsion Unit, 

Current Converters, 

Circuit Breakers, DC bus 

A rule-based EMS is proposed that 

simulates the entire system and 
investigates the system stability and 

load sharing strategies in several 
operating conditions 

[213] 
Fuzzy logic 

control 

algorithm 

Generator 
An approach is presented to reduce 

GHG emissions optimally 

 

[214] 

Meta-heuristic 

optimization 

algorithm 

Diesel engine generator, 

battery, inverter, DC-DC 

converter, Rectifier, 
propeller 

Hybrid systems power management 

optimization in electric ferries 

SIMULATION AND HARDWARE PLATFORMS 

Most machine learning models developed for maritime microgrids utilize 

MATLAB as the primary simulation environment. For solving optimization problems, 

various algorithms are implemented using the General Algebraic Modeling System 

(GAMS), while BARON (Branch-And-Reduce Optimization Navigator) solvers are 

employed to enhance GAMS’s high-level modeling capabilities for efficiently solving 

objective functions [172], [29]. Visual Studio is also used in certain systems for 

monitoring purposes [173]. 

In marine vessel direct current (MVDC) shipboard power systems, real-time fault 

simulations are conducted using digital simulators, with initial data analysis frequently 

performed in MATLAB [175]. Python is another widely adopted programming 

environment due to its flexibility and extensive library support, making it suitable for 

developing and simulating machine learning-based marine power systems [119], 

[139], [130]. 

Various real-time simulation tools are also employed. For instance, an MVDC 

power system model has been developed using the AppSIM Real-Time Simulator to 

replicate fault scenarios, with NA-MEMD applied for preprocessing fault voltage data. 

In another case, the Real Time Digital Simulator (RTDS) is used to execute high- 

fidelity simulations of marine power systems and generate datasets for fault detection 

and classification. The RTDS platform provides high-speed, real-time performance 

suitable for general power system analysis and control system validation [230], [231]. 
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RTDS utilizes advanced hardware with parallel processing capabilities and is 

operated via a graphical interface called RSCAD. RSCAD acts as the primary tool for 

interacting with RTDS hardware, allowing users to build, simulate, and analyze 

interactive models. It also facilitates efficient data collection for post-processing [133]. 

Owing to its near real-time performance and broad I/O channel support, RTDS has 

gained widespread adoption in various power system applications [232]. It is 

particularly effective for system design, testing, and algorithm verification in safety- 

critical and control-sensitive environments [136]. 

PSCAD is another widely used software for simulating MVDC shipboard power 

system models [155]. Real-time fault detection algorithms are implemented in 

PSCAD/EMTDC to evaluate electrical behavior under transient conditions [176]. 

Moreover, numerous rule-based systems applied in marine microgrids are simulated 

using MATLAB/Simulink for power optimization and energy management [128], 

[214]. Finally, several studies have adopted Hardware-in-the-Loop (HIL) frameworks 

based on real-time simulation to validate the performance and effectiveness of 

proposed optimization strategies for shipboard microgrids [48], [117]. 

CASE STUDIES AND PERFORMANCE COMPARISON 

Several studies have applied AI models to specific maritime case studies, such as 

hybrid-electric ferries and cargo vessels. Key results from these studies are 

summarized below: 

A hybrid-electric ferry employing K-means clustering and linear programming 

for EMS optimization achieved a 12–18% reduction in fuel consumption. LSTM-based 

forecasting of propulsion load demonstrated 95% prediction accuracy, significantly 

improving scheduling and generator loading. Rule-based control integrated with ANN- 

based power prediction was used to prevent blackouts in naval shipboard systems, 

ensuring 100% uptime in critical operations. 

Table 10: Summarized performance metrics of different ai techniques applied in the 

reviewed studies 
 

Technique Application Area Accuracy/Benefit Notes 

SVM Fault Diagnosis 93% Good generalization, 

needs labeled data 

LSTM Load Forecasting 95% Excellent for time- 

series prediction 

Rule-Based + ANN Power Control Stable Output Best for deterministic 

logic 
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DISCUSSION 

The integration of artificial intelligence (AI) into shipboard microgrid systems 

marks a significant advancement in enhancing operational efficiency, environmental 

compliance, and system resilience. AI-driven approaches—particularly machine 

learning (ML) and deep learning (DL) techniques—have demonstrated considerable 

potential in tasks such as predictive maintenance, fault detection, load forecasting, and 

real-time power optimization. These applications directly contribute to reduced fuel 

consumption and lower greenhouse gas emissions, aligning maritime operations with 

international sustainability directives. 

Despite these advantages, several challenges hinder the widespread adoption of 

AI-based control in marine environments. One of the primary obstacles is the difficulty 

of model generalization across diverse vessel types and operating conditions, largely 

due to heterogeneous system architectures, variable data quality, and inconsistent 

operational protocols. Additionally, the opaque nature of many deep learning models 

poses concerns regarding explainability—an essential requirement for safety-critical 

maritime systems. Other technical barriers include the need for real-time processing, 

ensuring data privacy, and addressing cybersecurity threats. 

To mitigate these issues, hybrid control frameworks that combine data-driven AI 

models with deterministic, rule-based strategies offer a promising compromise, 

balancing system adaptability with reliability and interpretability. The continued 

evolution of such architectures, supported by standardized evaluation protocols and 

deployment strategies, will be crucial for future development. 

Conclusion 

This paper presented a comprehensive review of AI methodologies applied to 

shipboard microgrid systems, with an emphasis on machine learning, deep learning, 

and rule-based hybrid approaches. Among these, artificial neural networks (ANNs) 

emerged as the most frequently utilized, alongside techniques such as k-means 

clustering, support vector machines (SVMs), decision trees, regression models, and 

fuzzy logic algorithms.The reviewed literature highlights the successful deployment 

of these intelligent control techniques across diverse maritime applications, including 

power and energy management, ship design optimization, radar control, fault and 

anomaly detection, fuel consumption forecasting, and marine traffic regulation. 

Notable improvements were observed in the efficiency and reliability of onboard 

components such as propulsion systems, energy storage units, thrusters, converters, 

generators, radars, and sensors. Simulation platforms such as MATLAB, Python, 

PSCAD, Real-Time Digital Simulator (RTDS), and hardware-in-the-loop (HIL) 

systems were commonly employed to evaluate model performance. Overall, the 
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findings underscore that AI-enabled microgrid control strategies offer tangible benefits 

in terms of energy efficiency, emissions reduction, and operational cost minimization. 

Recommendations and Future Work 

The insights obtained through this review point to several promising avenues for future 

research. First, there is significant potential for exploring deep reinforcement learning 

(DRL) and federated learning approaches to enable more adaptive and decentralized 

control in marine microgrids. These techniques could be especially valuable in 

environments characterized by uncertainty, variability, and real-time constraints. 

Second, the integration of robust cybersecurity mechanisms within AI-based control 

frameworks remains underexplored. Future efforts should prioritize the development 

of intelligent intrusion detection and cyber-resilient control systems to protect critical 

shipboard infrastructure. Third, to ensure safe and explainable AI deployment in 

maritime settings, greater emphasis should be placed on developing interpretable 

models that comply with marine safety standards. Hybrid systems that integrate AI 

with expert systems or rule-based logic may offer a pragmatic solution. Lastly, the 

creation and public release of standardized, high-fidelity datasets reflecting various 

operational profiles and vessel types would significantly advance research in this 

domain. The establishment of benchmark protocols and unified testing frameworks 

will also be instrumental in accelerating real-world implementation of AI-driven 

marine microgrid technologies. 
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